Войти
В помощь школьнику
  • Виды вступлений и заключений к сочинению части С ЕГЭ по русскому языку
  • Биография солженицына Каково отношение к матрене окружающих
  • ЕГЭ по обществознанию: разбираем задания с учителем
  • Биография Маяковского: самое главное и интересное
  • Хроника белого террора в России
  • Презентация на тему нервная система человека
  • Примеры материи и вещества. Материя в полевой физике. Что такое материя

    Примеры материи и вещества. Материя в полевой физике. Что такое материя

    Тема лекции: Физика материи.
    определение
    Материя - существующее в пространстве осязаемое и неосязаемое содержание,

    заполняющее собой (занимающее) место в пространстве, обладающее физическими свойствами.
    Проще говоря - материя это всё то, что существует (присутствует) в пространстве, вне зависимости от собственной природы, включая осязаемое и неосязаемое. Всё это материя.

    Что в связи с этим надо понимать:
    Надо четко понимать - что материей является, а что материей не является.
    Не все, о чем люди имеют представление, является материей.
    Материей не является само пространство, а только то, что в нем расположено.

    Это первая важная для понимания позиция.
    Вторая, важная для понимания позиция это то что
    материей не являются информация и абстракции.
    И применительно к информации материальным может быть только носитель информации, а не сама информация.
    То есть материя отдельно, пространство отдельно, и отдельно информация, все фантазии, образы, мыслеформы и глюки – все это отдельно. Они материей не являются.
    Мы не сможем приснившейся дедушке гантелей разбить бабушкин телевизор.

    Исходя из определение материи как «существующее в пространстве, обладающее свойствами содержание»), мы легко можем отличать материальное от нематериального, например, чем настоящий материальный (существующий в реальности) пингвин отличается от воображаемого нематериального (несуществующего в реальности).

    Настоящий пингвин обладает физическими свойствами, заполняет собой место в пространстве и имеет протяженность. Воображаемый пингвин наоборот, реальных свойств не имеет, не заполняет собой место в пространстве и присутствует не в пространстве, а в воображении индивидуума, причем лишь в виртуальном виде, например, в виде некого образа.
    Место дислокации воображаемого пингвина, не реальный мир, не пространство, а абстрактный «мир» - воображение.
    И плечи свои такой пингвин расправляет не в пространстве, а в воображении индивидуума.
    И мы не сможем обнаружить в мозгу человека ни само воображение, ни ту лужицу где плещется воображаемый пингвин.
    При желании мы можем попытаться обозначить в пространстве габариты воображаемого пингвина, но мы не можем заполнить выбранное место воображаемым пингвином.
    У воображаемого пингвина нет невымышленных свойств.
    Воображаемый пингвин не пропечется в духовке и мы даже не сможем заготовить такого пингвина на зиму тем более отобрать его у Обамы.

    Мы не сможем облить воображаемого пингвина краской, или закидать яйцами. Краска к нему не прилипнет, а от яиц он легко увернётся .

    То есть по наличию либо отсутствию физических свойств - человек может отличать воображаемое от действительного.
    далее
    Реальная физическая материя проявляет различные свойства и мы в соответствии с общими признаками можем разделить материю на категории.
    Согласно свойствам прерывности-непрерывности (по другому дискретности), материя делится на дискретную и недискретную формы

    Недискретная (непрерывная) материя в природе представлена в виде поля
    Дискретная (прерывная, зернистая) материя в природе представлена в виде частиц.
    Частицы, в свою очередь находятся в одном из двух состояний:
    -либо ведут себя непосредственно как частицы передвигаются в пространстве со скоростью близкой к скорости света
    - либо группируются в вещество.
    То есть более детально по признаку сгруппированности - можно разделить материю более детально и выделить три основные категории.
    Вещество, частицы, поле.

    Первая позиция это частицы сгруппировавшиеся в вещество,
    Вторая позиция - свободные частицы (не сгруппировавшиеся в вещество)
    и третья позиция поле.
    И материя в природе проявляет себя и как вещество и как частицы и как поле.
    ------
    И опять же надлежит хорошо помнить, что материей является только, то что обладает свойствами.
    Необладающая свойствами неведомая «чавойта» не является материей.
    Если какая-то материя существует, но до сих пор не обнаружена,
    то при обнаружении она сообразно своим свойствам угодит в одну из категорий
    либо вещество, либо свободные частицы, либо поле.
    рассмотрим по пунктам.
    Что такое вещество.
    Вещество - вид материи обладающий массой покоя.
    Всё что имеет массу покоя это вещество. Вода (жидкость)- это вещество. Газ это вещество.
    И все предметы в нашем осязаемом мире состоят из вещества, не важно шифер это или бабушкин дирижабль - всё это в конечном итоге состоит из частиц и все это вещество.

    С осознанием того, что такое вещество обычно трудностей не возникает и как правило, все в состоянии понимать, что такое вещество.
    Далее.
    позиция - поле.
    Поле это нечто материальное, но невещественное. И не все сразу способны уразуметь (осознать, понять) как материальное может быть невещественным.
    На самом деле все довольно просто.
    Ученые изначально определились, что считать материальным-
    Материальное - это все то, что находится в пространстве и обладает свойствами.
    Вот у нас есть 100% того, что находится в пространстве - это материя
    и часть её проявляет такие - то свойства.

    Если бы свойств никаких не было - это бы не являлось материей.
    Свойства проявляет – значит это одна из форм материи,
    При этом, по фактическим проявлениям поле не соответствует определению вещества в частности у поля отсутствует масса.
    И совокупно получается, что по своим свойствам поле материально но не вещественно.
    Чтобы понять, что такое поле, надо представить себе физику без поля.
    Летят навстречу друг другу два кирпича.
    Чем соприкасаются два кирпича?
    По внешнему контуру соприкасаются атомами.
    Анимашка олег
    Давайте рассмотрим как там атомы взаимодействуют и как это будет выглядеть без поля:
    Летят на встречу друг другу два атома,
    протоны настрополили, электроны распушили, сейчас случится большой бабах

    А поле с собой атомы не взяли, зацепиться друг за друга было нечем, так насквозь и проскочили.

    Никакого столкновения эти атомы и не заметили, не могли заметить.
    Каков совокупный объем составляющих атом дискретных объектов?
    Сколько там в этом атоме мяска? Сколько там того, чего можно пощупать и какой объем оно занимает? Иногда атомы рисуют очень мясистыми. Иногда не очень.

    Но если рассматривать подробнее, то между частицами есть расстояние, и каждый меньший элемент, в свою очередь опять же планетарен, а значит дискретная материя опять же занимает незначительную часть от общего объема. И это все стремится практически к нулю.

    То есть изображать надлежит не мясистый атом, а тощенький.

    Давайте смоделируем атом без поля.
    А чтобы было наглядно, возьмем пол эскадрильи обычного размера мух и пусть они летят над московской кольцевой дорогой, прямо над машинами по большому кругу.

    А в центре, в районе арбата пусть скачет главная такая протонная мушильда, а остальные мухи пусть вокруг неё главной по кольцу летают не приближаясь.
    Мы получили вполне пристойную мушиную модель атома без полей.
    А теперь давайте где ни будь в Лапландии разместим вторую такую же мушиную модель атома и начнем обе эти модели друг к другу приближать.
    Пусть они по взрослому, летят друг на друга.
    Какова вероятность, что при сближении моделей этих двух атомов они друг за друга зацепится?
    И чем они зацепятся?
    Жужжания много, а поля вообще нет.
    Даже если какие-то две мухи друг другу точно в лоб попадут – то и в этом случае они не смогут зацепиться. Второй атом это тоже планетарная система, практически пустота.
    Вероятность зацепа никакая. Цепляться без поля нечем.
    Два атома при таких условиях свободно пролетают сквозь друг друга.
    При такой геометрии без поля это один сплошной сквозняк.
    Мы бы в принципе не смогли бы столкнуть никакие две элементарные частицы если бы у них не было поля.
    Кирпичи бы сквозь друг друга замечательно пролетали.
    Вот собственно, какую роль играет поле.
    Без поля мы в принципе не имеем возможности взаимодействия ни на макро ни на микро уровне.
    Идём дальше:
    Каковы свойства поля?
    Поле не имеет ни внутренней ни наружной дискретности.
    То есть не имеет разрывов, а так же не имеет внешних границ как таковых.

    Понять геометрию поля можно из графика распределения воздействия на расширяющуюся сферу:

    График стремится к нулю но не обнуляется. Как бы далеко мы не удалялись от источника поля
    Поле ослабевает но не исчезнет. Границы у поля как таковой нет.
    Кроме того поле упруго.
    (Магнит)
    Поле фундаментально упруго, недискретно и не обладает массой.
    Определение поля:
    Поле – особый не обладающий массой вид материи, представляет собой непрерывный объект, расположенный в пространстве, в каждой точке которого на частицу действуют определенные по величине и направлению уравновешенные либо неуравновешенные силы.
    И опять же мы не забываем, что это давно известная информация
    и в рамках физической концепции вещество и поле традиционно противопоставляются друг другу как два вида материи, у первого из которых структура дискретна, а у второго- непрерывна.

    Заглубимся в матчасть:
    Первое что надо понимать, это то, что вся вселенная на макроуровне равномерно заполнена вещественной материей, а значит, равномерно заполнена полем.

    В силовом плане это самое мощное из существующих физических явлений и носит оно гравитационную природу. Совокупное гравитационное поле.
    Анимашка олег 2 старс
    Все физические взаимодействия, в том числе каждая связь в каждом в атоме вашего тела определяется этим полем.
    Гравитационное поле фундаментально, а все остальные поля это частные локальные явления на этом базовом гравитационном поле.
    Представьте, что здесь бы были миллиарды резинок а мы обрезали всего одну. И это бы было аналогом вторичного поля, например электромагнитного поля.
    Частное возмущение на базовом поле.
    И когда мы рассматриваем поле любого магнита – это тоже вторичное поле - незначительное возмущение на базовом гравитационном поле имеющем колоссальный потенциал.
    В определенном смысле гравитационное поле и есть тот самый эфир или по другому - «физический вакуум», который все ищут и не могут найти. Но это единый недискретный некорпускулярный объект.
    Силы возникают в каждой точке пространства заполненного полем и никаких пробелов там нет.

    Следующая позиция частицы.
    Частица - материальный дискретный микрообъект.
    В чем основные различия между частицами и полем.
    Частицы дискретны (каждая из них представляет самостоятельный объект сложного внутреннего строения),
    Этим они отличаются от поля которое недискретно не имеет внутренней дискретности (не имеет разрывов), а так же поле, не имеет внешних границ как таковых.

    Применительно к частицам надлежит понимать, что бытующее в науке разделение материи на категории не совсем строгое.
    В литературе порой допускаются нестрогие некорректные трактовки.

    Свободные частицы обладающие массой по современной научной моде относятся в самостоятельную категорию, а частицы не обладающие массой покоя в ряде случаев нестрого трактуются как поле.
    И в этом месте для многих наступает недоразумение известное как корпускулярно волновой дуализм.
    Причины этого мыслительного явления мы уже отдельно объясняли (в разделе корпускулярно волновой дуализм). Повторно останавливаться не будем.
    В этом месте достаточно напомнить, что в научном смысле и частицы и поле и волна это по прежнему, самостоятельные понятия.
    И это требование первого закона логики, который гласит:
    «…иметь не одно значение - значит не иметь ни одного значения; если же у слов нет значений, тогда утрачена всякая возможность рассуждать друг с другом, а в действительности - и с самим собой; ибо невозможно ничего мыслить, если не мыслить что-нибудь одно».
    Либо поле, либо частица.

    Кирпич это материя, кирпич состоит из той части материи которую принято называть веществом
    Но это еще не все.
    Имеется связка вещества (а значит и любого кирпича) с полем. Каждый кирпич находится в совокупном вселенском поле.

    И кроме того каждый кирпич имеет собственное поле.
    Если говорить упрощая, мы можем назвать это поле полем кирпича, можем назвать гравитационным полем кирпича.

    В природе нет ни одного кирпича, не окруженного собственным полем.
    поле сопутствует каждому кирпичу.
    Вся вещественная материя в природе имеет поле.
    И в этом плане необходимо понимать, что в природе не существует вещества не имеющего своего частного поля.
    И любой материальный объект в фундаментальном физическом смысле представляет из себя совокупность вещества и поля.
    И это поле распределено равномерно во все стороны от вещества и по мере удаления от вещества это поле ослабевает.

    То есть фундаментально у каждого объекта обладающего массой есть своё поле и кроме того все массы вселенной в совокупности формируют единое гравитационное поле вселенной.
    Теперь давайте поймем: где кирпич, а где его частное поле. Частное поле привязано к кирпичу.
    Если мы разделим кирпич на части и разведем эти части в стороны, то и частное поле кирпича тоже будет разделено и разнесено в стороны.
    (ломаем кирпич)
    Частное поле кирпича разделено и разнесено в стороны.

    Теперь давайте рассмотрим, что общего между частицами связанными в рамках вещества и между несвязанными, свободными частицами.
    Пример.
    К чему приведет планомерное расщепление кирпича, деление кирпича
    Планомерное разрушение так называемых внутренних связей кирпича.
    Все без исключения внутренние связи кирпича определяются извне, со стороны базового поля. Совокупное вселенское поле создает в пространстве колоссальное напряжение, которое и определяет все внутренние связи в вещественных объектах.
    Чем глубже мы расщепляем кирпич, чем меньше будет фракция, тем больше частиц будут становиться несвязанными веществом, эти частицы отделятся от кирпича и начнут перемещаться со скоростью близкой к скорости света.
    Если продолжить расщепление, то все фрагменты расщепятся, высвободятся до уровня несвязанных частиц и под влиянием внешнего поля начнут перемещаться со скоростью близкой к скорости света по всем свободным направлениям.
    То есть, если полностью расщепить кирпич, до уровня частиц, то кирпич умчится со скоростью света во всех свободных направлениях.
    И если бы внешнего поля вообще бы не было, то кирпич бы сделал то же самое, но с гораздо большей скоростью, со скоростью превышающей скорость света (но это предмет отдельного разговора, а так же вопросы массы и так называемого нейтрино).
    Для общего понимания давайте рассмотрим какая ситуация бы имела место для незаполненной веществом вселенной.
    Пустая вселенная и один кирпич.
    Казалось бы, да как мы это узнаем?
    Но самом деле, знаем мы это абсолютно точно, потому что вариантов приложения сил к телу всего два: притяжение и отталкивание.
    И так же мы знаем, что на силах прямого притяжения материя существовать не может в принципе, это технически невозможно, потому что неминуемо приводит к лавинообразному процессу обвала в материи в одну точку.
    Те кто этого ещё не знает, может посмотреть доказательную часть по ссылке, либо посмотреть фильм «Равновесие в физике».
    Продолжим:
    Единственный возможный вариант для существования материи в пространстве это взаимное отталкивание, которое при достаточном насыщении вселенной материей приводит к комплексному приталкиванию масс друг к другу.
    Тяготение это комплексное приталкивание.
    Так что же будет происходить с кирпичом во вселенной не заполненной материей?
    (Абсолютно пустая вселенная и один кирпич).
    При таком сценарии внутренние связи кирпича обеспечить в принципе не чем. Внешнего поля, внешних сил, внешнего приталкивания нет. Все вещество кирпича без вариантов полностью расщепится и разлетится во всех направлениях, соответственно рассеется и поле кирпича.
    Никакое существование никакого вещественного физического тела в таких условиях невозможно.
    Во вселенной же заполненной телами, массами картина иная.
    Массы «создали» общее поле,
    на макроуровне вселенная заполнилась равномерно, ковер галактик.
    Это поле обеспечило внутренние связи в каждом кирпиче.
    И мы видим, что в реальной вселенной материя не распадается на частицы и не разлетается.

    Собственно все.

    Материя: вещество, частицы, поле.
    И если бы не было поля, то не было бы ни каких взаимодействий между частицами, да и самих частиц привычном понимании тоже бы не было.
    С вами был Виктор Катющик.
    Следите за нашими публикациями.

    Прежде всего, остановимся на том, что широко известный термин “материя” применяется в литературе не всегда корректно. То, что мы видим, измеряем или изучаем – это не материя, а вещество.

    С целью установления большей определенности в понятиях материи и вещества рассмотрим далее три известных определения.

    ”Материя – это все многообразие предметов, которые, существуя независимо и вне человека , доступны ему с помощью органов чувств” [ П. Гольбах, французский материалист эпохи Просвещения].

    “Материя - это философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них”. [В.И. Ленин, “Материализм и эмпириокритицизм”, 1909 г.].

    Все три определения связывают наличие материи с чувственным восприятием человека. Однако сенсорный аппарат человека выделяет лишь незначительную долю информации (по излучениям – менее 5%) из окружающего нас мира. Так, мы видим только узкую часть оптического излучения, при этом объективно существующие радиоактивное и радиочастотное излучения вообще не наблюдаются. Диапазон слухового восприятия у всех людей различается, но он также ограничен верхним пределом (в районе ~ 20 кГц).

    Обратим внимание на тот факт, что в приведенных выше формулировках говорится о материи как об основе всех вещей и явлений , а о самих вещах и явлениях, при этом категории материи и вещества четко не разделяются.

    Попытки использовать в основе мироздания какую либо известную вещественную частицу ни к чему не привели, такой "первокирпичик" до сих пор не найден.

    Физические представления о микромире показывают, что никакая из известных в настоящее время микрочастиц не может претендовать на фундаментальность и выступать в качестве основы мироздания.

    Поэтому для объяснения свойств загадочной субстанции – материи привлекаются различные гипотезы.

    В соответствии с первой гипотезой идея дискретности и структурирования, присущая микро- и макромиру, сохраняется и в субмикромире. Дело лишь в том, что современный уровень науки и техники принципиально не позволяет обнаруживать столь малые объекты (объекты субмикромира), уж не говоря о работе с этими объектами. В качестве примера можно привести до конца не завершенную международную исследовательскую работу по изучению характеристик бозона Хиггса, которому приписывают свойства переносчика массовых характеристик в мире элементарных частиц.


    Иллюстрацией к этой методологической позиции служит известное выражение В. Ленина: “Электрон так же неисчерпаем, как и атом” .

    Вторая гипотеза основывается на неизбежности принципиальных различий в характеристиках материи и вещества . Способность материи быть фундаментальной основой всех вещей и явлений требует, чтобы материя обладала уникальным качеством, отличным от свойств вещества . Поскольку основным признаком вещества является его дискретность , материя должна обладать противоположным качеством – т.е. непрерывностью.

    Таким образом, предполагается, что материя – это непрерывная, сплошная бесструктурная субстанция, основные качества которой – отсутствие дискретности и меры (привычной для классической метрологии) с сопутствующими мере характеристиками (много – мало, тепло – холодно, тяжело – легко и т.п.).

    Отсюда следует, что материя не может быть дана в ощущениях. Ощущать можно вещественные, дискретные объекты, имеющие меру. Никакие современные технические средства наблюдения не могут “наблюдать” непрерывную и бесструктурную материю. Материя не наблюдаема в принципе (уточним – на современном уровне развития науки и техники). Наблюдаемо лишь вторичное производное материи – вещество. Лишь его реализации даются в ощущениях.

    Попробуем нарисовать приближенный аналог материи в более доступных терминах. Представим емкость, заполненную некой жидкостью. Нагреем жидкость и поднесем к ее поверхности охлажденное зеркало. Поверхность зеркала покроется конденсатом (“запотеет”), представляющим собой микрокапли жидкости. При наличии хорошего технического обеспечения можно количественно определить характеристику молекулярного уровня конденсата - запах, состав и др. В зависимости от свойств зеркала (температуры, используемого материала и др.) характеристика конденсируемой паро-газо-воздушной смеси будет изменяться. Уберем провоцирующий фактор - нагрев. Исчезнет ли описываемый процесс? Нет, уменьшится лишь его эффективность. Однако, учитывая микроуровень взаимодействующих элементов все равно можно говорить о множестве отдельных событий на границах взаимодействующих фаз – жидкости, воздуха и зеркала. Вернемся к исходным терминам. Жидкость – это грубый аналог непрерывной материи. Последняя вместе с зеркалом образует материальную среду физического вакуума. Конденсат и паро-газо-воздушная смесь – это проявления родившихся из жидкости-материи реальных физических вещественных структур.

    Не надо искать в предложенной модели несоответствия между материей и жидкостью, строгой научной модели материи нет. Дело не в этом. Дело в том, что полевые (!) свойства субъядерного уровня позволяют предположить возможность обменных процессов на границах фаз материя - вещество. Детали таких процессов на субъядерном уровне в подробностях пока неизвестны, но физико-химических аналогов на вещественном уровне - изобилие.

    В чем состоит фундаментальная взаимосвязь таких противоречивых сущностей? По каким законам происходят переходы непрерывного в дискретное и дискретного в непрерывное? Большинство проблем физики остались нерешенными из-за отсутствия ответов на эти вопросы. По тем же причинам не было четкого разграничения между материей и веществом, а физика, именуя себя материалистической наукой, изучала преимущественно вещество и поле, т.е. проявления материи.

    Рассуждения о биообъекте как о материальной вещественной субстанции приводят нас, таким образом, к анализу вещественной стороны дела. По-видимому, для осознания, анализа и исследования материи как таковой сведений еще недостаточно. Эта ситуация не снимает актуальности изучения субмикромира, но научные достижения, гипотезы и теории в этой области – это удел будущего.

    Что же касается дальнейшего изучения вещественное картины мира, то прояснение только этой стороны вопроса также сулит значительные продвижения в биологии и медицине.

    В. Вернадский писал:“ Удивительно не то, что возник человек, удивительно то, что возникли условия, благодаря которым он возник”. Это высказывание напрямую отсылает нас к началам появления и развития материального вещества. Удивительно, в частности и то, что все известные нам иерархические уровни выполняют общую генеральную задачу (использую, естественно, разные механизмы), что приводит к проявлениям холизма, синергии и самоорганизации.

    Таблица. Уровни иерархии, структурные элементы организма с определением функций и информационных сигналов различных систем.

    К наиболее важным фундаментальным концепциям физического описания природы относятся пространство, время, движение и материя .

    В современной физической картине мира окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи . Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме.

    Меняется представление о движении , которое становится лишь частным случаем физического взаимодействия. Известно четыре вида фундаментальных физических взаимодействий: гравитационное, электромагнитное, сильное и слабое. Они описываются на основе принципа близкодействия, взаимодействия, передаются соответствующими полями от точки к точке, скорость передачи взаимодействия всегда конечна и не может превышать скорости света в вакууме (300 000 км/с).

    1. Корпускулярно – волновой дуализм материи. Квантово-полевая картина мира. Материя – это философская категория для обозначения объективной реальности, которая отображается нашими ощущениями, существуя независимо от них – это философское определение материи.

    В классическом естествознании различают два вида материи: вещество и поле. По современным представлениям признано существование еще одного вида материи – физический вакуум.

    В классической механике Ньютона в качестве вещественных образований выступает материальная частица малых размеров – корпускула, часто называемая материальной точкой и физическое тело, как единая система корпускул, каким-то образом связанных между собой. Конкретные формы этих вещественных образований по классическим представлениям – песчинка, камень, вода и т.п.

    В девятнадцатом веке с появлением представлений об электромагнитном поле началось новая эра в естествознании.

    Датский физик Эрстед (1777 – 1851) и французский физик Ампер (1775 – 1836) показали на опыте, что проводник с электрическим током порождает эффект отклонения магнитной стрелки. Эрстед предположил, что вокруг проводника с током существует магнитное поле, которое является вихревым. Ампер заметил, что магнитные явления происходят тогда, когда по электрической цепи течет ток. Появилась новая наука – электродинамика.

    Английский физик Фарадей (1791 – 1867) открыл явление электромагнитной индукции – возникновение тока в проводнике вблизи движущегося магнита.

    Основываясь на открытиях Фарадея в области электромагнетизма, английский математик и физик Максвелл (1831 – 1879) вводит понятие электромагнитного поля.

    Согласно теории Максвелла, каждая заряженная частичка окружена полем – невидимым ореолом, оказывающим воздействие на другие заряженные частицы, находящиеся поблизости, т.е. поле одной заряженной частицы действует на другие заряженные частицы с некоторой силой.

    Теория электромагнитного поля ввела новое представление, что электромагнитное поле реальность, материальный носитель взаимодействия. Мир постепенно стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электрического поля.

    2. Квантовая механика. На исходе третьего десятилетия ХХ века классическая физика пришла к затруднениям в описании явлений микромира. Появилась необходимость разработки новых методов исследования. Возникает новая механика – квантовая теория, устанавливающая способ описания и законы движения микрочастиц.

    В 1901 г. немецкий физик Макс Планк (1858 – 1947) при исследовании теплового излучения пришел к выводу, что в процессах излучения энергия излучается или поглощается не непрерывно, а лишь малыми порциями – квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения: Е= hy, где y – частота света, h – постоянная Планка.

    В 1905 г. Эйнштейн применил гипотезу Планка к свету и пришел к выводу, что следует признать корпускулярную структуру света.

    Квантовая теория вещества и излучения получила подтверждение в экспериментах (фотоэффект), обнаруживших, что при облучении твердых тел светом, из них выбиваются электроны. Фотон ударяется об атом и выбивает из него электрон.

    Эйнштейн объяснил этот так называемый фотоэффект на основе квантовой теории, доказав, что энергия, необходимая для освобождеия электрона зависит от частоты света. (светового кванта), поглощаемого веществом.

    Было доказано, что свет в опытах по дифракции и интерференции проявляет волновые свойства, а в экспериментах по фотоэффекту - корпускулярные, т.е. может вести себя и как частица и как волна, значит обладает дуализмом.

    Представления Эйнштейна о квантах света привели к идее о «волнах материи», это послужило основой развития теории корпускулярно-волнового дуализма материи.

    В 1924 г. французский физик Луи де Бройль (1892- 1987) пришел к выводу, что сочетание волновых и корпускулярных свойств является фундаментальным свойством материи. Волновые свойства присущи всем видам материи (электронам, протонам, атомам, молекулам, даже макроскопическим телам).

    В 1927 г. американскими учеными Дэвисом и Джермером и независимо от них П.С. Тартаковским были обнаружены волновые свойства электронов в экспериментах по дифракции электронов на кристаллических структурах. Позже были обнаружены волновые свойства и у других микрочастиц (нейтронов, атомов, молекул). На основе системы формул волновой механики были предсказаны и открыты новые элементарные частицы.

    Современная физика признала корпускулярно-волновой дуализм материи. Любой материальный объект проявляется и как частица и как волна в зависимости от условий наблюдения.

    С развитием теории физического вакуума, определение материи дополняется. Современное определение материи: материя – это вещество, поле и физический вакуум.

    Теория физического вакуума находится на стадии разработки, природа вакуума до конца не исследована, но известно, что ни одна материальная частица не может существовать без присутствия вакуума, это среда, в которой она существует и из которой появляется. Вакуум и вещество неразделимы.

    3. Принципы современной физики. В 1925 г. швейцарский физик В. Паули (1900-1958) обосновал принцип: в любой квантовой системе (атом) 2 или более электронов не могут находиться в одном и том же квантовом состоянии (на одном энергетическом уровне или на одной орбите). Принцип Паули определяет закономерности заполнения электронных оболочек атомов, периодичность их химических свойств, валентность, реакционную способность. Это фундаментальный закон природы.

    В 1924 г. Н. Бор сформулировал принцип дополнительности : ни одна теория не может описать объект столь исчерпывающим образом, чтобы исключить возможность альтернативных подходов. Примером служит решение ситуации корпускулярно-волнового дуализма материи. «Понятия частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего».

    В 1927 г. немецкий физик В. Гейзенберг сформулировал знаменитый принцип неопределенностей. Смысл, которого в том, что невозможно одновременно осуществить измерение и координаты и скорости (импульса) частицы . Никогда нельзя одновременно знать где находится частица и как быстро и в каком направлении она движется.

    Соотношение неопределенностей выражает невозможность наблюдать микромир, не нарушая его. Пример: если в эксперименте нужно установить координату частицы с известной скоростью, ее необходимо осветить, т.е. направить пучок фотонов, однако фотоны сталкиваясь с частицами передадут им часть энергии и частица начнет двигаться с новой скоростью и в новом направлении. Наблюдатель-экспериментатор вмешиваясь в систему, внедряясь в нее со своими приборами, нарушает текущий порядок событий.

    Основная идея квантовой механики состоит в том, что, в микромире определяющим является представление о вероятности событий. Предсказания в квантовой механике имеют вероятностный характер, невозможно точно предсказать результат эксперимента, можно рассчитать только вероятность различных исходов опыта.

    С позиций физики, на микроуровне господствуют статистические закономерности , на макроуровне динамические законы . Философское осмысление принципа неопределенностей показывает, что случайность и неопределенность фундаментальное свойство природы и присуще и микромиру и макромиру – миру деятельности человека.

    4. Элементарные частицы и силы в природе. Сегодня выделяют 4 уровня организации микромира: молекулярный, атомный, протонный (нуклонный) и кварковый.

    Элементарными называют такие частицы, которые на современном уровне развития науки нельзя считать соединением других, более простых.

    Различают реальные частицы – их можно фиксировать с помощью приборов и виртуальные – возможные, о существовании которых можно судить лишь опосредованно.

    Аристотель считал вещество непрерывным, то есть любой кусок вещества можно дробить до бесконечности. Демокрит считал, что материя имеет зернистую структуру, и что все в мире состоит из различных атомов, которые абсолютно неделимы.

    Крушение существовавших до конца 19 века представлений об абсолютной неделимости атома началось с открытия в 1897 г. английским физиком Дж. Томсоном простейшей элементарной частицы материи – электрона , которые вылетали из атома. В 1911 г. английский физик Эрнст Резерфорд доказал, что атомы вещества обладают внутренней структурой: они состоят из положительно заряженного ядра и вращающихся вокруг него электронов.

    Сначала предполагали, что ядро атома состоит из положительно заряженных частиц, которые назвали протонами . В 1932 г. Джеймс Чэдвиг обнаружил, что в ядре есть еще другие частицы – нейтроны , масса которых равна массе протона, но которые не заряжены.

    В 1928 г. физиком–теоретиком П. Дираком была предложена волновая теория электрона, основанная на его корпускулярно-волновой природе. Согласно корпускулярно-волновой теории, частицы могут вести себя подобно волне. Одна из посылок этой теории заключалась в том, что должна существовать элементарная частица, обладающая такими же свойствами, как электрон , но с положительным зарядом. Такая частица была обнаружена и была названа позитроном . Из теории Дирака также следовало, что позитрон и электрон, взаимодействуя между собой (реакция аннигиляции ), образуют пару фотонов , т.е. квантов электро-магнитного излучения. Позитрон и электрон двигаются по одной орбитали. Сталкиваясь, они превращаются в кванты излучения.

    В 60-х годах ХХ века протоны и нейтроны считались элементарными частицами. Но оказалось, что протоны и нейтроны состоят из еще более мелких частиц. В 1964 г. американские ученые М. Гелл-Манн и Д. Цвейг независимо друг от друга выдвинули сходную гипотезу существования «субчастиц». Гелл-Манн назвал их кварками . Название взял из стихотворной строки (Джойс «Поминки по Финегану»).

    Известно несколько разновидностей кварков; предполагают, что существует шесть ароматов, которым отвечают: верхний (u ), нижний (d ), странный, очарованный, прекрасный, t - кв … Кварк каждого аромата может иметь один из трех цветов – красный, желтый и синий, хотя это всего лишь обозначение.

    Кварки отличаются друг от друга по величине заряда и по квантовым характеристикам. Например, нейтрон и протон составляются каждый из трех кварков: протон – из uud , с зарядом +2/3 +2/3 -1/3 = 1;

    нейтрон – из udd , с зарядом +2/3 -1/3 -1/3 = 0.

    Каждый кварк по закону симметрии имеет антикварк.

    Квантовой характеристикой является спин: S = 0; S= 1; S = 2; S = ½.. Спин очень важная квантовая характеристика элементарной частицы, не менее важная, чем заряд или масса.

    В 2008 г. в Европе совместными усилиями физиков многих стран построен андронный колайдер, в результате действий которого, возможно получение сведений об «исходных кирпичиках», из которых построено вещество в природе.

    5. Фундаментальные физические взаимодействия. В первой половине ХХ века физика изучала материю в двух ее проявлениях – вещество и поле. Причем кванты полей и частицы вещества подчиняются разным квантовым статистикам и ведут себя различным образом.

    Частицы вещества являются ферми -частицами (фермионами ). Все фермионы имеют полуцелое значение спина – ½. Для частиц с полуцелым значением спина справедлив принцип Паули, согласно которому, две тождественные частицы с полуцелым спином не могут находиться в одном и том же квантовом состоянии.

    Все кванты полей являются бозе-частицами (бозонами). Это частицы с целым значением спина. Системы тождественных бозе-частиц подчиняются статистике Бозе – Эйнштейна. Принцип Паули для них не справедлив: в одном состоянии может находиться любое число частиц. Бозе- и ферми- частицы рассматриваются как частицы, имеющие различную природу.

    По современным представлениям, взаимодействие любого типа без посредника не протекает, оно должно иметь своего физического агента. Притяжение или отталкивание частиц передается через среду, их разделяющую, такой средой является вакуум. Скорость передачи взаимодействия ограничена фундаментальным пределом – скоростью света.

    В квантовой механике предполагается, что все силы или взаимодействия между частицами вещества переносятся частицами с целочисленным спином, равным 0, 1, 2 (бозе-частицами, бозонами). Это происходит следующим образом, частица вещества (фермион), например электрон или кварк испускает другую частицу, которая является переносчиком взаимодействия, например, фотон. В результате отдачи скорость частицы вещества (фермиона) меняется. Частица переносчик (бозон) налетает на другую частицу вещества (фермион) и поглощается ею. Это соударение меняет скорость второй частицы.

    Частицы-переносчики (бозоны), которыми обмениваются частицы вещества (фермионы) называются виртуальными, потому что в отличие от реальных их нельзя непосредственно зарегистрировать при помощи детектора частиц, так как они существуют очень короткое время.

    Итак, вокруг частицы вещества (фермиона) создается поле, порождающее частицы – бозоны. Две реальные частицы оказавшись в радиусе действия однотипных зарядов начинают стабильно обмениваться виртуальными бозонами: одна частица испускает бозон и тут же поглощает идентичный бозон, испущенный другой частицей-партнером и наоборот.

    Частицы переносчики можно классифицировать на 4 типа в зависимости от величины переносимого взаимодействия и от того с какими частицами они взаимодействовали. Таким образом, в природе существуют четыре вида взаимодействия.

      Гравитационная сила.

    Это самое слабое из всех взаимодействий. В макромире оно проявляет себя тем сильнее, чем больше массы взаимодействующих тел, а в микромире оно теряется на фоне более могучих сил.

    В квантово-механическом подходе к гравитационному полю, считается, что гравитационная сила, действующая между двумя частицами материи переносится частицей со спином 2 , которая называется гравитоном . Гравитон не обладает собственной массой и переносимая им сила является дальнодействующей.

      Электромагнитные силы .

    Действуют между электрически заряженными частицами. Благодаря электромагнитным силам возникают атомы, молекулы и макроскопические тела. Все химические реакции представляют собой электромагнитные взаимодействия.

    Согласно квантовой электродинамике, заряд создает поле, квантом которого служит безмассовый бозон со спином равным 1 - фотон. Переносчиком электромагнитного взаимодействия является фотон.

    Электормагнитные силы гораздо сильнее гравитационных. Эти силы могут проявляться и как притяжение и как отталкивание, в отличие от гравитационных, которые проявляются только как притяжение.

      Слабое взаимодействие .

    Это третье фундаментальное взаимодействие существует только в микромире. Оно отвечает за радиоактивность и существует между всеми частицами вещества со спином ½, но в нем не участвуют частицы-бозоны со спином 0, 1, 2 – фотоны и гравитоны.

    Радиоактивный распад вызывается превращением внутри нейтрона кварка аромата d в кварк аромата u, (протон превращается в нейтрон, позитрон в нейтрино), меняется заряд частиц. Испускаемое нейтрино обладает огромной проницающей способностью – оно проходит через железную плиту толщиной миллиард километров. За счет слабого взаимодействия светит Солнце.

      Сильное взаимодействие.

    Сильные взаимодействия представляют собой взаимное притяжение составных частей ядра атома. Они удерживают кварки внутри протона и нейтрона, а протоны и нейтроны внутри ядра. Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать теплоту и свет за счет ядерной энергии.

    Сильное взаимодействие проявляется в ядерных силах. Они были открыты Э. Резерфордом в 1911 г. одновременно с открытием атомного ядра. Согласно гипотезе Юкавы, сильные взаимодействия состоят в испускании промежуточной частицы – пи-мезона – переносчика ядерных сил, а также другие мезоны, найденные позже (масса мезонов в 6 раз меньше массы нуклонов). Нуклоны (протоны и нейтроны) окружены облаками мезонов. Нуклоны могут приходить в возбужденные состояния – барионные резонансы, и обмениваться при этом иными частицами (мезонами).

    Мечтой современных физиков является построить теорию большого объединения , которая объединяла бы все четыре взаимодействия.

    Сегодня физики считают, что они могут создать эту теорию на основе теории суперструн. Эта теория должна объединить все фундаментальные взаимодействия при сверхвысоких энергиях.

    Вопросы:

      Как были доказаны корпускулярные и волновые свойства вещества?

      Что изучает квантовая механика и почему она так называется?

      Что такое вакуум и что значит «возбужденный вакуум»?

      Что такое принцип дополнительности?

      Что такое принцип неопределенности?

      Охарактеризовать принцип симметрии.

      Как связаны принципы симметрии и законы сохранения физических величин?

      Каково значение принципа суперпозиции в квантовой механике?

      В чем специфика отношения прибор-объект в квантовой механике?

      Дать определение материи по современным представлениям.

      Чем вещество отличается от поля?

      Из чего состоят протоны и нейтроны?

      Какие фундаментальные взаимодействия в настоящее время объединены?

    Литература:

    Дубнищева Т.Я. КСЕ. 2003. – С. 238-261. С. 265-309.

    Горелов А.А. КСЕ. – 2004. – С. 79-94

    Игнатова В.А. Естествознание. 2002. – С.110-125..

    Гейзенберг В. Шаги за горизонт. – М. – 1987.

    Ландау Л.Д. и др. Курс общей физики. – М: Наука, 1969. – С.195-214.

    Вайнберг С. Мечты об окончательной теории. М. – 1995.

    Линднер Г. Картины современной физики. – М. – 1977.

    СОВРЕМЕННАЯ ХИМИЧЕСКАЯ КАРТИНА МИРА

    Материя - бесконечное множество всех сосуществующих в мире объектов и систем, совокупность их свойств и связей, отношений и форм движения. Она включает в себя не только непосредственно наблюдаемые объекты и тела природы, но и все те, которые не даны человеку в его ощущениях.

    Неотъемлемым свойством материи является движение. Движение материи представляет собой любые изменения, происходящие с материальными объектами в результате их взаимодействий. В природе наблюдаются различные виды движения материи: механическое, колебательное и волновое, тепловое движение атомов и молекул, равновесные и неравновесные процессы, радиоактивный распад, химические и ядерные реакции, развитие живых организмов и биосферы.

    На современном этапе развития естествознания исследователи различают следующие виды материи: вещество, физическое поле и физический вакуум.

    Вещество представляет собой основной вид материи, обладающий массой покоя. К вещественным объектам относят: элементарные частицы, атомы, молекулы и многочисленные образованные из них материальные объекты. Свойства вещества зависят от внешних условий и интенсивности взаимодействия атомов и молекул, что и обусловливает различные агрегатные состояния веществ.

    Физическое поле представляет собой особый вид материи, обеспечивающий физическое взаимодействие материальных объектов и их систем. К физическим полям исследователи относят: электромагнитное и гравитационное поля, поле ядерных сил, волновые поля, соответствующие различным частицам. Источником физических полей являются частицы.

    Физический вакуум - это низшее энергетическое состояние квантового поля. Этот термин был введен в квантовую теорию поля для объяснения некоторых процессов. Среднее число частиц - квантов поля - в вакууме равно нулю, однако в нем могут рождаться частицы в промежуточных состояниях, существующие короткое время.

    При описании материальных систем используют корпускулярную (от лат. corpuskulum - частица) и континуальную (от лат. continium - непрерывный) теории. Континуальная теория рассматривает повторяющиеся непрерывные процессы, колебания, которые происходят в окрестности некоторого среднего положения. При распространении колебаний в среде возникают волны. Теория колебаний - область физики, занимающаяся исследованием этих закономерностей. Таким образом, континуальная теория описывает волновые процессы. Наряду с волновым (континуальным) описанием широко используется понятие частицы - корпускулы. С точки зрения континуальной концепции вся материя рассматривалась как форма поля, равномерно распространенного в пространстве, а после случайного возмущения поля возникли волны, то есть частицы с различными свойствами. Взаимодействие этих образований привело к появлению атомов, молекул, макротел, образующих макромир. На основе этого критерия выделяют следующие уровни материи: микромир, макромир и мегамир.

    Микромир - это область предельно малых, непосредственно ненаблюдаемых материальных микрообъектов, размер которых исчисляется в диапазоне от 10 -8 до10 -16 см, а время жизни - от бесконечности до 10 -24 с. Это мир от атомов до элементарных частиц. Все они обладают как волновыми, так и корпускулярными свойствами.

    Макромир - мир материальных объектов, соизмеримых по своим масштабом с человеком. На этом уровне пространственные величины измеряются от миллиметров до километров, а время - от секунд до лет. Макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, человеком и продуктами его деятельности.

    Мегамир - сфера огромных космических масштабов и скоростей, расстояние в которой измеряется астрономическими единицами (1 а. е. = 8,3 световых минуты), световыми годами (1 световой год = 10 трлн км) и парсеками (1пк = 30 трлн км), а время существования космических объектов - миллионами и миллиардами лет. К этому уровню относятся наиболее крупные материальные объекты: планеты и их системы, звезды, галактики и их скопления, образующие метагалактики.

    Классификация элементарных частиц

    Элементарные частицы - основные структурные элементы микромира. Элементарные частицы могут быть составными (протон, нейтрон) и несоставными (электрон, нейтрино, фотон). К настоящему времени обнаружено более 400 частиц и их античастиц. Некоторые элементарные частицы обладают необычными свойствами. Так, долгое время считалось, что частица нейтрино не имеет массы покоя. В 30-е гг. XX в. при изучении бета-распада было обнаружено, что распределение по энергиям электронов, испускаемых радиоактивными ядрами, происходит непрерывно. Из этого следовало, что или не выполняется закон сохранения энергии, или кроме электронов испускаются трудно регистрируемые частицы, подобные фотонам с нулевой массой покоя, уносящие часть энергии. Ученые предположили, что это нейтрино. Однако зарегистрировать нейтрино экспериментально удалось только в 1956 г. на огромных подземных установках. Сложность регистрации этих частиц заключается в том, что захват частиц нейтрино происходит чрезвычайно редко из-за их высокой проникающей способности. В ходе экспериментов было установлено, что масса покоя нейтрино не равна нулю, хотя от нуля отличается ненамного. Интересными свойствами обладают и античастицы. Они имеют многие из тех же признаков, что и их частицы-двойники (массу, спин, время жизни и т. д.), но отличаются от них знаками электрического заряда или другими характеристиками.

    В 1928 г. П. Дирак предсказал существование античастицы электрона - позитрона, который был обнаружен спустя четыре года К. Андерсоном в составе космических лучей. Электрон и позитрон - не единственная пара частиц-двойников, все элементарные частицы, кроме нейтральных, имеют свои античастицы. При столкновении частицы и античастицы происходит их аннигиляция (от лат. annihilatio - превращение в ничто) - превращение элементарных частиц и античастиц в другие частицы, число и вид которых определяются законами сохранения. Например, в результате аннигиляции пары электрон- позитрон рождаются фотоны. Число обнаруженных элементарных частиц со временем увеличивается. Вместе с тем продолжается поиск фундаментальных частиц, которые могли бы быть составными «кирпичиками» для построения известных частиц. Гипотеза о существовании подобного рода частиц, названных кварками, была высказана в 1964 г. американским физиком М. Гелл-Маном (Нобелевская премия 1969 г.).

    Элементарные частицы обладают большим количеством характеристик. Одна из отличительных особенностей кварков заключается в том, что они имеют дробные электрические заряды. Кварки могут соединяться друг с другом парами и тройками. Соединение трех кварков образует барионы (протоны и нейтроны). В свободном состоянии кварки не наблюдались. Однако кварковая модель позволила определить квантовые числа многих элементарных частиц.

    Элементарные частицы классифицируют по следующим признакам: массе частицы, электрическому заряду, типу физического взаимодействия, в котором участвуют элементарные частицы, времени жизни частиц, спину и др.

    В зависимости от массы покоя частицы (масса ее покоя, которая определяется по отношению к массе покоя электрона, считающегося самой легкой из всех частиц, имеющих массу) выделяют:

    ♦ фотоны (греч. photos - частицы, которые не имеют массы покоя и движутся со скоростью света);

    ♦ лептоны (греч. leptos - легкий) - легкие частицы (электрон и нейтрино);

    ♦ мезоны (греч. mesos - средний) - средние частицы с массой от одной до тысячи масс электрона (пи-мезон, ка-мезон и др.);

    ♦ барионы (греч. barys - тяжелый) - тяжелые частицы с массой более тысячи масс электрона (протоны, нейтроны и др.).

    В зависимости от электрического заряда выделяют:

    ♦ частицы с отрицательным зарядом (например, электроны);

    ♦ частицы с положительным зарядом (например, протон, позитроны);

    ♦ частицы с нулевым зарядом (например, нейтрино).

    Существуют частицы с дробным зарядом - кварки. С учетом типа фундаментального взаимодействия, в котором участвуют частицы, среди них выделяют:

    ♦ адроны (греч. adros - крупный, сильный), участвующие в электромагнитном, сильном и слабом взаимодействии;

    ♦ лептоны, участвующие только в электромагнитном и слабом взаимодействии;

    ♦ частицы - переносчики взаимодействий (фотоны - переносчики электромагнитного взаимодействия; гравитоны - переносчики гравитационного взаимодействия; глюоны - переносчики сильного взаимодействия; промежуточные векторные бозоны - переносчики слабого взаимодействия).

    По времени жизни частицы делятся на стабильные, квазистабильные и нестабильные. Большинство элементарных частиц нестабильно, время их жизни - 10 -10 -10 -24 с. Стабильные частицы не распадаются длительное время. Они могут существовать от бесконечности до 10 -10 с. Стабильными частицами считаются фотон, нейтрино, протон и электрон. Квазистабильные частицы распадаются в результате электромагнитного и слабого взаимодействия, иначе их называют резонансами. Время их жизни составляет 10 -24 -10 -26 с.

    2.2. Фундаментальные взаимодействия

    Взаимодействие - основная причина движения материи, поэтому взаимодействие присуще всем материальным объектам независимо от их природного происхождения и системной организации. Особенности различных взаимодействий определяют условия существования и специфику свойств материальных объектов. Всего известно четыре вида взаимодействия: гравитационное, электромагнитное, сильное и слабое.

    Гравитационное взаимодействие первым из известных фундаментальных взаимодействий стало предметом исследования ученых. Оно проявляется во взаимном притяжении любых материальных объектов, имеющих массу, передается посредством гравитационного поля и определяется законом всемирного тяготения, который был сформулирован И. Ньютоном

    Закон всемирного тяготения описывает падение материальных тел в поле Земли, движение планет Солнечной системы, звезд и т. п. По мере увеличения массы вещества гравитационные взаимодействия возрастают. Гравитационное взаимодействие - наиболее слабое из всех известных современной науке взаимодействий. Тем не менее гравитационные взаимодействия определяют строение всей Вселенной: образование всех космических систем; существование планет, звезд и галактик. Важная роль гравитационного взаимодействия определяется его универсальностью: все тела, частицы и поля участвуют в нем.

    Переносчиками гравитационного взаимодействия являются гравитоны - кванты гравитационного поля.

    Электромагнитное взаимодействие также является универсальным и существует между любыми телами в микро-, макро- и мегамире. Электромагнитное взаимодействие обусловлено электрическими зарядами и передается с помощью электрического и магнитного полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное - при движении электрических зарядов. Электромагнитное взаимодействие описывается: законом Кулона, законом Ампера и др. и в обобщенном виде - электромагнитной теорией Максвелла, связывающей электрическое и магнитное поля. Благодаря электромагнитному взаимодействию возникают атомы, молекулы и происходят химические реакции. Химические реакции представляют собой проявление электромагнитных взаимодействий и являются результатами перераспределения связей между атомами в молекулах, а также количества и состава атомов в молекулах разных веществ. Различные агрегатные состояния вещества, силы упругости, трения и т. д. определяются электромагнитным взаимодействием. Переносчиками электромагнитного взаимодействия являются фотоны - кванты электромагнитного поля с нулевой массой покоя.

    Внутри атомного ядра проявляются сильные и слабые взаимодействия. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Данное взаимодействие определяется ядерными силами, обладающими зарядовой независимостью, короткодействием, насыщением и другими свойствами. Сильное взаимодействие удерживает нуклоны (протоны и нейтроны) в ядре и кварки внутри нуклонов и отвечает за стабильность атомных ядер. С помощью сильного взаимодействия ученые объяснили, почему протоны ядра атома не разлетаются под действием электромагнитных сил отталкивания. Сильное взаимодействие передается глюонами - частицами, «склеивающими» кварки, которые входят в состав протонов, нейтронов и других частиц.

    Слабое взаимодействие также действует только в микромире. В этом взаимодействии участвуют все элементарные частицы, кроме фотона. Оно обусловливает большинство распадов элементарных частиц, поэтому его открытие произошло вслед за открытием радиоактивности. Первая теория слабого взаимодействия была создана в 1934 г. Э. Ферми и развита в 1950-е гг. М. Гелл-Маном, Р. Фейнманом и другими учеными. Переносчиками слабого взаимодействия принято считать частицы с массой в 100 раз больше массы протонов - промежуточные векторные бозоны.

    Характеристики фундаментальных взаимодействий представлены в табл. 2.1.

    Таблица 2.1

    Характеристики фундаментальных взаимодействий

    Из таблицы видно, что гравитационное взаимодействие гораздо слабее других взаимодействий. Радиус его действия неограничен. Оно не играет существенной роли в микропроцессах и в то же время является основным для объектов с большими массами. Электромагнитное взаимодействие сильнее гравитационного, хотя радиус его действия также неограничен. Сильное и слабое взаимодействия имеют очень ограниченный радиус действия.

    Одна из важнейших задач современного естествознания - создание единой теории фундаментальных взаимодействий, объединяющей различные виды взаимодействия. Создание подобной теории означало бы также построение единой теории элементарных частиц.

    2.3. Тепловое излучение. Рождение квантовых представлений

    В конце XX в. волновая теория не могла объяснить и описать тепловое излучение во всем диапазоне частот электромагнитных волн теплового диапазона. А то, что тепловое излучение, и в частности свет, является электромагнитными волнами, стало научным фактом. Дать точное описание теплового излучения удалось немецкому физику Максу Планку.

    14 декабря 1900 г. Планк выступил на заседании Немецкого физического общества с докладом, в котором изложил свою гипотезу квантовой природы теплового излучения и новую формулу излучения (формула Планка). Этот день физики считают днем рождения новой физики - квантовой. Выдающийся французский математик и физик А. Пуанкаре писал: «Квантовая теория Планка есть, без всякого сомнения, самая большая и самая глубокая революция, которую натуральная философия претерпела со времен Ньютона».

    Планк установил, что тепловое излучение (электромагнитная волна) испускается не сплошным потоком, а порциями (квантами). Энергия каждого кванта —

    то есть пропорциональна частоте электромагнитной волны - v. Здесь h - постоянная Планка, равная 6,62 · 10 -34 Дж · с.

    Совпадение расчетов Планка с опытными данными было полным. В 1919 г. М. Планку присвоили Нобелевскую премию.

    На основе квантовых представлений А. Эйнштейн в 1905 г. разработал теорию фотоэффекта (Нобелевская премия 1922 г.), поставив науку перед фактом: свет обладает и волновыми и корпускулярными свойствами, он излучается, распространяется и поглощается квантами (порциями). Кванты света стали называть фотонами.

    2.4. Гипотеза де Бройля о корпускулярно-волновом дуализме свойств частиц

    Французский ученый Луи де Бройль (1892-1987) в 1924 г. в докторской диссертации «Исследования по теории квантов» выдвинул смелую гипотезу об универсальности корпускулярно-волнового дуализма, утверждая, что поскольку свет ведет себя в одних случаях как волна, а в других - как частица, то и материальные частицы (электроны и др.) в силу общности законов природы должны обладать волновыми свойствами. «В оптике, - писал он, - в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка? Не думали ли мы слишком много о картине «частиц» и не пренебрегали ли чрезмерной картиной волн?» В то время гипотеза де Бройля выглядела безумной. Лишь в 1927 г., три года спустя, наука пережила огромное потрясение: физики К. Дэвиссон и Л. Джермер экспериментально подтвердили гипотезу де Бройля, получив дифракционную картину электронов.

    Согласно квантовой теории света А. Эйнштейна, волновые характеристики фотонов света (частота колебаний v и длина волна л = c/v) связаны с корпускулярными характеристиками (энергией ε ф, релятивистской массой m ф и импульсом р ф) соотношениями:

    По идее де Бройля, любая микрочастица, в том числе и с массой покоя ш 0 Ц 0, должна обладать не только корпускулярными, но и волновыми свойствами. Соответствующие частота v и длина волны л определяются при этом соотношениями, подобными эйнштейновским:

    Отсюда длина волны де Бройля —

    Таким образом, соотношения Эйнштейна, полученные им при построении теории фотонов в результате гипотезы, выдвинутой де Бройлем, приобрели универсальный характер и стали одинаково применимыми как для анализа корпускулярных свойств света, так и при исследовании волновых свойств всех микрочастиц.

    2.5. Опыты Резерфорда. Модель атома Резерфорда

    А. Опыты Резерфорда

    В 1911 г. Резерфорд провел исключительные по своему значению эксперименты, доказавшие существование ядра атома. Для исследования атома Резерфорд применил его зондирование (бомбардировку) с помощью α-частиц, которые возникают при распаде радия, полония и некоторых других элементов. Резерфордом и его сотрудниками еще в более ранних опытах в 1909 г. было установлено, что α-частицы обладают положительным зарядом, равным по модулю удвоенному заряду электрона q =+2e, и массой, совпадающей c массой атома гелия, то есть

    m а = 6,62 · 10 -27 кг,

    что примерно в 7300 раз больше массы электрона. Позже было установлено, что α-частицы представляют собой ядра атомов гелия. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут изменить траекторию α-частαицы. Их рассеяние (изменение направления движения) может вызвать только положительно заряженная часть атома. Таким образом, по рассеянию α-частиц можно определить характер распределения положительного заряда, а значит, и массы внутри атома.

    Было известно, что α-частицы, излученные полонием, летят со скоростью 1,6-107 м/с. Полоний помещался внутрь свинцового футляра, вдоль которого высверлен узкий канал. Пучок α-частиц, пройдя канал и диафрагму, падал на фольгу. Золотую фольгу можно сделать исключительно тонкой - толщиной 4-10 -7 м (в 400 атомов золота; это число можно оценить, зная массу, плотность и молярную массу золота). После фольги α-частицы попадали на полупрозрачный экран, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), обусловленной флуресценцией, которая наблюдалась в микроскоп.

    При хорошем вакууме внутри прибора (чтобы не было рассеяния частиц от молекул воздуха) в отсутствие фольги на экране возникал светлый кружок из сцинтилляций, вызываемых тонким пучком α-частиц. Когда на пути пучка помещалась фольга, то подавляющее большинство α-частиц все равно не отклонялось от своего первоначального направления, то есть проходило сквозь фольгу, как если бы она представляла собой пустое пространство. Однако имелись α-частицы, которые изменяли свой путь и даже отскакивали назад.

    Марсден и Гейгер, ученики и сотрудники Резерфорда, насчитали более миллиона сцинтилляций и определили, что примерно одна из 2 тысяч α-частиц отклонялась на углы, большие 90°, а одна из 8 тысяч - на 180°. Объяснить этот результат на основе других моделей атома, в частности Томсона, было нельзя.

    Расчеты показывают, что при распределении по всему атому положительный заряд (даже без учета электронов) не может создать достаточно интенсивное электрическое поле, способное отбросить α-части-цу назад. Напряженность электрического поля равномерно заряженного шара максимальна на поверхности шара и убывает до нуля по мере приближения к центру. Рассеяние α-частиц на большие углы происходит так, как если бы весь положительный заряд атома был сосредоточен в его ядре - области, занимающей весьма малый объем по сравнению со всем объемом атома.

    Вероятность попадания α-частиц в ядро и их отклонение на большие углы очень мала, поэтому для большинства α-частиц фольги как бы не существовало.

    Резерфорд теоретически рассмотрел задачу о рассеянии α-частиц в кулоновском электрическом поле ядра и получил формулу, позволяющую по плотности потока α-частиц, налетающих на ядро, и измеренному числу частиц, рассеянных под некоторым углом, определить число N элементарных положительных зарядов +е, содержащихся в ядре атомов данной рассеивающей фольги. Опыты показали, что число N равно порядковому номеру элемента в периодической системе Д. И. Менделеева, то есть N = Z (для золота Z = 79).

    Таким образом, гипотеза Резерфорда о сосредоточении положительного заряда в ядре атома позволила установить физический смысл порядкового номера элемента в периодической системе элементов. В нейтральном атоме должно содержаться также Z электронов. Существенно, что число электронов в атоме, определенное различными методами, совпало с числом элементарных положительных зарядов в ядре. Это послужило проверкой справедливости ядерной модели атома.

    Б. Ядерная модель атома Резерфорда

    Обобщая результаты опытов по рассеянию α-частиц золотой фольгой, Резерфорд установил:

    ♦ атомы по своей природе в значительной мере прозрачны для α-частиц;

    ♦ отклонения α-частиц на большие углы возможны только в том случае, если внутри атома имеется очень сильное электрическое поле, создаваемое положительным зарядом, связанным с большой и сконцентрированной в очень малом объеме массой.

    Для объяснения этих опытов Резерфорд предложил ядерную модель атома: в ядре атома (области с линейными размерами 10 -15 -10 -14 м) сосредоточены весь его положительный заряд и практически вся масса атома (99,9 %). Вокруг ядра в области с линейными размерами ~10 -10 м (размеры атома оценены в молекулярно-кинетической теории) движутся по замкнутым орбитам отрицательно заряженные электроны, масса которых составляет лишь 0,1 % массы ядра. Следовательно, электроны находятся от ядра на расстоянии от 10 000 до 100 000 поперечников ядра, то есть основную часть атома составляет пустое пространство.

    Ядерная модель атомов Резерфорда напоминает солнечную систему: в центре системы находится «солнце» - ядро, а вокруг него по орбитам движутся «планеты» - электроны, поэтому данную модель называют планетарной. Электроны не падают на ядро потому, что электрические силы притяжения между ядром и электронами уравновешиваются центробежными силами, обусловленными вращением электронов вокруг ядра.

    В 1914 г., через три года после создания планетарной модели атома, Резерфорд исследовал положительные заряды в ядре. Бомбардируя электронами атомы водорода, он обнаружил, что нейтральные атомы превратились в положительно заряженные частицы. Так как атом водорода имеет один электрон, Резерфорд решил, что ядро атома является частицей, несущей элементарный положительный заряд +е. Эту частицу он назвал протоном.

    Планетарная модель хорошо согласуется с опытами по рассеиванию α-частиц, но она не может объяснить устойчивость атома. Рассмотрим, например, модель атома водорода, содержащего ядро-протон и один электрон, который движется со скоростью v вокруг ядра по круговой орбите радиуса r. Электрон должен по спирали падать на ядро, и частота его обращения вокруг ядра (следовательно, и частота излучаемых им электромагнитных волн) должна непрерывно изменяться, то есть атом неустойчив, и его электромагнитное излучение должно иметь непрерывный спектр.

    В действительности оказывается, что:

    а) атом устойчив;

    б) атом излучает энергию лишь при определенных условиях;

    в) излучение атома имеет линейчатый спектр, определяемый его строением.

    Таким образом, применение классической электродинамики к планетарной модели атома привело к полному противоречию с экспериментальными фактами. Преодоление возникших трудностей потребовало создания качественно новой - квантовой - теории атома. Однако, несмотря на свою несостоятельность, планетарная модель и сейчас принята в качестве приближенной и упрощенной картины атома.

    2.6. Теория Бора для атома водорода. Постулаты Бора

    Датский физик Нильс Бор (1885-1962) в 1913 г. создал первую квантовую теорию атома, связав в единое целое эмпирические закономерности линейчатых спектров водорода, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света.

    В основу своей теории Бор положил три постулата, по поводу которых американский физик Л. Купер заметил: «Конечно, было несколько самонадеянно выдвигать предложения, противоречащие электродинамике Максвелла и механике Ньютона, но Бор был молод».

    Первый постулат (постулат стационарных состояний): в атоме электроны могут двигаться только по определенным, так называемым разрешенным, или стационарным, круговым орбитам, на которых они, несмотря на наличие у них ускорения, не излучают электромагнитных волн (поэтому эти орбиты названы стационарными). Электрон на каждой стационарной орбите обладает определенной энергией E n .

    Второй постулат (правило частот): атом излучает или поглощает квант электромагнитной энергии при переходе электрона с одной стационарной орбиты на другую:

    hv = E 1 - E 2 ,

    где E 1 и E 2 - энергия электрона соответственно до и после перехода.

    При E 1 > E 2 происходит излучение кванта (переход атома из одного состояния с большей энергией в состояние с меньшей энергией, то есть переход электрона с любой дальней на любую ближнюю от ядра орбиту); при E 1 < E 2 - поглощение кванта (переход атома в состояние с большей энергией, то есть переход электрона на более удаленную от ядра орбиту).

    Будучи уверенным, что постоянная Планка должна играть основную роль в теории атома, Бор ввел третий постулат (правило квантования): на стационарных орбитах момент импульса электрона L n = m e υ n r n кратен величине = h/(2π), то есть

    m e υ n r n = nh, n = 1, 2, 3, …,

    где = 1,05 · 10 -34 Дж · с - постоянная Планка (величина h/(2π)) встречается столь часто, что для нее введено специальное обозначение («аш» с чертой; в данной работе «аш»- прямое); m е = 9,1 · 10 -31 кг - масса электрона; r п - радиус n-й стационарной орбиты; υ n - скорость электрона на этой орбите.

    2.7. Атом водорода в квантовой механике

    Уравнением движения микрочастицы в различных силовых полях является волновое уравнение Шредингера.

    Для стационарных состояний уравнение Шредингера будет таким:

    где Δ - оператор Лапласа

    , m - масса частицы, h - постоянная Планка, E - полная энергия, U - потенциальная энергия.

    Уравнение Шредингера является дифференциальным уравнением второго порядка и имеет решение, которое указывает на то, что в атоме водорода полная энергия должна иметь дискретный характер:

    E 1 , E 2 , E 3…

    Эта энергия находится на соответствующих уровнях n =1,2,3,…по формуле:

    Самый нижний уровень E соответствует минимальной возможной энергии. Этот уровень называют основным, все остальные - возбужденными.

    По мере роста главного квантового числа n энергетические уровни располагаются теснее, полная энергия уменьшается, и при n = ∞ она равна нулю. При E>0 электрон становится свободным, несвязанным с конкретным ядром, а атом - ионизированным.

    Полное описание состояния электрона в атоме, помимо энергии, связано с четырьмя характеристиками, которые называются квантовыми числами. К ним относятся: главное квантовое число п, орбитальное квантовое число l, магнитное квантовое число m 1 , магнитное спиновое квантовое число m s .

    Волновая φ-функция, описывающая движение электрона в атоме, представляет собой не одномерную, а пространственную волну, соответствующую трем степеням свободы электрона в пространстве, то есть волновая функция в пространстве характеризуется тремя системами. Каждая из них имеет свои квантовые числа: п, l, m l .

    Каждой микрочастице, в том числе и электрону, также свойственно собственное внутреннее сложное движение. Это движение может характеризоваться четвертым квантовым числом m s . Поговорим об этом подробнее.

    A. Главное квантовое число п, согласно формуле, определяет энергетические уровни электрона в атоме и может принимать значения п = 1, 2, 3…

    Б. Орбитальное квантовое число /. Из решения уравнения Шредингера следует, что момент импульса электрона (его механический орбитальный момент) квантуется, то есть принимает дискретные значения, определяемые формулой

    где L l - момент импульса электрона на орбите, l - орбитальное квантовое число, которое при заданном п принимает значение i = 0, 1, 2… (n - 1) и определяет момент импульса электрона в атоме.

    B. Магнитное квантовое число m l . Из решения уравнения Шредингера следует также, что вектор L l (момент импульса электрона) ориентируется в пространстве под влиянием внешнего магнитного поля. При этом вектор развернется так, что его проекция на направление внешнего магнитного поля будет

    L l z = hm l

    где m l называется магнитным квантовым числом, которое может принимать значения m l = 0, ±1, ±2,±1, то есть всего (2l + 1) значений.

    Учитывая сказанное, можно сделать заключение о том, что атом водорода может иметь одно и то же значение энергии, находясь в нескольких различных состояниях (n - одно и то же, а l и m l - разные).

    При движении электрона в атоме электрон заметно проявляет волновые свойства. Поэтому квантовая электроника вообще отказывается от классических представлений об электронных орбитах. Речь идет об определении вероятного места нахождения электрона на орбите, то есть местонахождение электрона может быть представлено условным «облаком». Электрон при своем движении как бы «размазан» по всему объему этого «облака». Квантовые числа n и l характеризуют размер и форму электронного «облака», а квантовое число m l - ориентацию этого «облака» в пространстве.

    В 1925 г. американские физики Уленбек и Гаудсмит доказали, что электрон также обладает собственным моментом импульса (спином), хотя мы не считаем электрон сложной микрочастицей. Позднее выяснилось, что спином обладают протоны, нейтроны, фотоны и другие элементарные частицы

    Опыты Штерна, Герлаха и других физиков привели к необходимости характеризовать электрон (и микрочастицы вообще) добавочной внутренней степенью свободы. Отсюда для полного описания состояния электрона в атоме необходимо задавать четыре квантовых числа: главное - п, орбитальное - l, магнитное - m l , магнитное спиновое число - m s .

    В квантовой физике установлено, что так называемая симметрия или асимметрия волновых функций определяется спином частицы. В зависимости от характера симметрии частиц все элементарные частицы и построенные из них атомы и молекулы делятся на два класса. Частицы с полуцелым спином (например, электроны, протоны, нейтроны) описываются асимметричными волновыми функциями и подчиняются статистике Ферми—Дирака. Эти частицы называются фермионами. Частицы с целочисленным спином, в том числе и с нулевым, такие как фотон (Ls =1) или л-мезон (Ls = 0), описываются симметричными волновыми функциями и подчиняются статистике Бозе- Эйнштейна. Эти частицы называются бозонами. Сложные частицы (например, атомные ядра), составленные из нечетного числа фермионов, также являются фермионами (суммарный спин - полуцелый), а составленные из четного - бозонами (суммарный спин - целочисленный).

    2.8. Многоэлектронный атом. Принцип Паули

    В многоэлектронном атоме, заряд которого равен Ze, электроны будут занимать различные «орбиты» (оболочки). При движении вокруг ядра Z-электроны располагаются в соответствии с квантово-механическим законом, который называется принципом Паули (1925 г.). Он формулируется так:

    > 1. В любом атоме не может быть двух одинаковых электронов, определяемых набором четырех квантовых чисел: главного n, орбитального /, магнитного m и магнитного спинового m s .

    > 2. В состояниях с определенным значением могут находиться в атоме не более 2n 2 электронов.

    Значит, на первой оболочке («орбите») могут находиться только 2 электрона, на второй - 8, на третьей - 18 и т. д.

    Таким образом, совокупность электронов в многоэлектронном атоме, имеющих одно и то же главное квантовое число n, называют электронной оболочкой. В каждой из оболочек электроны располагаются по подоболочкам, которые соответствуют определенному значению /. Так как орбитальное квантовое число l принимает значения от 0 до (п - 1), число подоболочек равно порядковому номеру оболочки п. Количество электронов в подоболочке определяется магнитным квантовым числом m l и магнитным спиновым числом m s .

    Принцип Паули сыграл выдающуюся роль в развитии современной физики. Так, например, удалось теоретически обосновать периодическую систему элементов Менделеева. Без принципа Паули невозможно было бы создать квантовые статистики и современную теорию твердых тел.

    2.9. Квантово-механическое обоснование Периодического закона Д. И. Менделеева

    В 1869 г. Д. И. Менделеев открыл периодический закон изменения химических и физических свойств элементов в зависимости от их атомных масс. Д. И. Менделеев ввел понятие порядкового номера Z-элемента и, расположив химические элементы в порядке возрастания их номера, получил полную периодичность в изменении химических свойств элементов. Физический смысл порядкового номера Z-элемента в периодической системе был установлен в ядерной модели атома Резерфорда: Z совпадает с числом положительных элементарных зарядов в ядре (протонов) и, соответственно, с числом электронов в оболочках атомов.

    Принцип Паули дает объяснение Периодической системы Д. И. Менделеева. Начнем с атома водорода, имеющего один электрон и один протон. Каждый последующий атом будем получать, увеличивая заряд ядра предыдущего атома на единицу (один протон) и добавляя один электрон, который мы будем помещать в доступное ему, согласно принципу Паули, состояние.

    У атома водорода Z = 1 на оболочке 1 электрон. Этот электрон находится на первой оболочке (K-оболочка) и имеет состояние 1S, то есть у него n =1,а l =0(S-состояние), m = 0, m s = ±l/2 (ориентация его спина произвольна).

    У атома гелия (Не) Z = 2, на оболочке 2 электрона, оба они располагаются на первой оболочке и имеют состояние 1S, но с антипараллельной ориентацией спинов. На атоме гелия заканчивается заполнение первой оболочки (K-оболочки), что соответствует завершению I периода Периодической системы элементов Д. И. Менделеева. По принципу Паули, на первой оболочке больше 2 электронов разместить нельзя.

    У атома лития (Li) Z = 3, на оболочках 3 электрона:2—на первой оболочке (К-оболочке)и1—на второй (L-оболочке). На первой оболочке электроны в состоянии 1S, а на второй - 2S. Литием начинается II периодтаблицы.

    У атома бериллия (Be) Z = 4, на оболочках 4 электрона: 2 на первой оболочке в состоянии IS и 2 на второй в состоянии 2S.

    У следующих шести элементов - от В (Z = 5) до Ne(Z = 10) - идет заполнение второй оболочки, при этом электроны находятся как в состоянии 2S, так и в состоянии 2р (у второй оболочки образуется 2 под-оболочки).

    У атома натрия (Na) Z = 11. У него первая и вторая оболочки, согласно принципу Паули, полностью заполнены (2 электрона на первой и 8 электронов на второй оболочках). Поэтому одиннадцатый электрон располагается на третьей оболочке (М-оболочке), занимая наинизшее состояние 3S. Натрием открывается III период Периодической системы Д. И. Менделеева. Рассуждая подобным образом, можно построить всю таблицу.

    Таким образом, периодичность в химических свойствах элементов объясняется повторяемостью в структуре внешних оболочек у атомов родственных элементов. Так, инертные газы имеют одинаковые внешние оболочки из 8 электронов.

    2.10. Основные понятия ядерной физики

    Ядра всех атомов можно разделить на два больших класса: стабильные и радиоактивные. Последние самопроизвольно распадаются, превращаясь в ядра других элементов. Ядерные преобразования могут происходить и со стабильными ядрами при их взаимодействии друг с другом и с различными микрочастицами.

    Любое ядро заряжено положительно, и величина заряда определяется количеством протонов в ядре Z (зарядовое число). Количество протонов и нейтронов в ядре определяет массовое число ядра A. Символически ядро записывается так:

    где X - символ химического элемента. Ядра с одинаковыми зарядовым числом Z и разными массовыми числами A называются изотопами. Например, уран в природе встречается в основном в виде двух изотопов

    Изотопы обладают одинаковыми химическими свойствами и разными физическими. Например, изотоп урана 2 3 5 92 U хорошо взаимодействуют с нейтроном 1 0 n любых энергий и может разделиться на два более легких ядра. В то же время изотоп урана 238 92 U делится только при взаимодействии с нейтронами высоких энергий, более 1 мегаэлектроновольта (МэВ) (1 МэВ = 1,6 · 10 -13 Дж). Ядра с одинаковыми A и разными Z называются изобарами.

    В то время как заряд ядра равен сумме зарядов входящих в него протонов, масса ядра не равна сумме масс отдельных свободных протонов и нейтронов (нуклонов), она несколько меньше ее. Это объясняется тем, что для связи нуклонов в ядре (для организации сильного взаимодействия) требуется энергия связи E. Каждый нуклон (и протон и нейтрон), попадая в ядро, образно говоря, выделяет часть своей массы для формирования внутриядерного сильного взаимодействия, которое «склеивает» нуклоны в ядре. При этом, согласно теории относительности (см. главу 3), между энергией E и массой m существует соотношение E = mc 2 ,где с - скорость света в вакууме. Так что формирование энергии связи нуклонов в ядре E св приводит к уменьшению массы ядра на так называемый дефект массы Δm = E св · c 2 . Эти представления подтверждены многочисленными экспериментами. Построив зависимость энергии связи на один нуклон E св / A = ε от числа нуклонов в ядре A, мы сразу увидим нелинейный характер этой зависимости. Удельная энергия связи ε с ростом A сначала круто возрастает (у легких ядер), затем характеристика приближается к горизонтальной (у средних ядер), а далее медленно снижается (у тяжелых ядер). У урана ε ≈ 7,5 МэВ, а у средних ядер ε ≈ 8,5 МэВ. Средние ядра наиболее устойчивы, у них большая энергия связи. Отсюда открывается возможность получения энергии при делении тяжелого ядра на два более легких (средних). Такая ядерная реакция деления может осуществиться при бомбардировке ядра урана свободным нейтроном. Например, 2 3 5 92 U делится на два новых ядра: рубидий 37 -94 Rb и цезий 140 55 Cs (один из вариантов деления урана). Реакция деления тяжелого ядра замечательна тем, что помимо новых более легких ядер появляются два новых свободных нейтрона, которые называют вторичными. При этом на каждый акт деления приходится 200 МэВ выделяющейся энергии. Она выделяется в виде кинетической энергии всех продуктов деления и далее может быть использована, например, для нагревания воды или другого теплоносителя. Вторичные нейтроны в свою очередь могут вызвать деление других ядер урана. Образуется цепная реакция, в результате которой в размножающей среде может выделиться огромная энергия. Этот способ получения энергии широко используется в ядерных боеприпасах и управляемых ядерных энергетических установках на электростанциях и на транспортных объектах с атомной энергетикой.

    Помимо указанного способа получения атомной (ядерной) энергии есть и другой - слияние двух легких ядер в более тяжелое ядро. Процесс объединения легких ядер может происходить лишь при сближении исходных ядер на расстояние, где уже действуют ядерные силы (сильное взаимодействие), то есть ~ 10 - 15 м. Этого можно достигнуть при сверхвысоких температурах порядка 1 000 000 °C. Такие процессы называют термоядерными реакциями.

    Термоядерные реакции в природе идут на звездах и, конечно, на Солнце. В условиях Земли они происходят при взрывах водородных бомб (термоядерное оружие), запалом для которых служит обычная атомная бомба, создающая условия для формирования сверхвысоких температур. Управляемый термоядерный синтез пока имеет только научно-исследовательскую направленность. Промышленных установок нет, однако работы в этом направлении ведутся во всех развитых странах, в том числе и в России.

    2.11. Радиоактивность

    Радиоактивностью называется самопроизвольное преобразование одних ядер в другие.

    Спонтанный распад изотопов ядер в условиях природной среды называют естественной, а в условиях лабораторий в результате деятельности человека - искусственной радиоактивностью.

    Естественную радиоактивность открыл французский физик Анри Беккерель в 1896 г. Это открытие вызвало революцию в естествознании вообще и в физике в частности. Классическая физика XIX в. с ее убежденностью в неделимости атома ушла в прошлое, уступив место новым теориям.

    Открытие и исследование явления радиоактивности связано также с именами Марии и Пьера Кюри. Этим исследователям в 1903 г. была присуждена Нобелевская премия по физике.

    Искусственная радиоактивность открыта и исследована супругами Ирен и Фредериком Жолио-Кюри, которые в 1935 г. также получили Нобелевскую премию.

    Необходимо отметить, что принципиального различия между этими двумя типами радиоактивности нет.

    Для каждого радиоактивного элемента установлены количественные оценки. Так, вероятность распада одного атома в одну секунду характеризуется постоянной распада данного элемента л, а время, за которое распадается половина радиоактивного образца, называется периодом полураспада Г 05 .

    Со временем число нераспавшихся ядер N убывает по экспоненциальному закону:

    N = N 0 e -λt ,

    где N 0 - число нераспавшихся ядер в момент времени t = t 0 (то есть начальное число атомов), N - текущее значение числа нераспавшихся

    Этот закон называется элементарным законом радиоактивного распада. Из него можно получить формулу для периода полураспада:


    Число радиоактивных распадов в образце за одну секунду называют активностью радиоактивного препарата. Чаще всего активность обозначают буквой A тогда по определению:


    где знак «-» означает убывание N во времени.

    Единица активности в системе СИ - Беккерель (Бк): 1 Бк=1распад/1с. Часто на практике используется внесистемная единица - Кюри (Ки), 1 Ки = 3,7 · 10 10 Бк.

    Можно показать, что активность уменьшается во времени также по экспоненциальному закону:

    A = A 0 e -λt .

    Вопросы для самопроверки

    1. Что такое материя? Какие виды материи различают в современном представлении?

    2. Объясните понятие «элементарные частицы». Назовите важнейшие характеристики элементарных частиц. Как классифицируются элементарные частицы?

    3. Сколько видов взаимодействия вам известно? Назовите их основные черты.

    4. Что такое античастицы?

    5. В чем заключается специфика изучения микромира по сравнению с изучением мега- и макромира?

    6. Охарактеризуйте кратко историю развития представлений о строении атома.

    7. Сформулируйте постулаты Н. Бора. Можно ли с помощью теории Н. Бора объяснить структуру атомов всех элементов таблицы Д. И. Менделеева?

    8. Кто и когда создал теорию электромагнитного поля?

    9. Что такое радиоактивность?

    10. Назовите основные виды радиоактивного распада.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru

    1. Введение

    2. О понятии «материя». Становление и развитие общих представлений о материи

    2.2 Материя в философии

    2.3 Материя в физике

    3. Основные виды материи

    4. Свойства и атрибуты материи

    5. Формы движения материи

    6. Структурные уровни организации материи

    Заключение

    Литература

    1. ВВЕДЕНИЕ

    Проблема определения сущности материи весьма сложна. Сложность заключается в высокой степени абстрактности самого понятия материи, а также в многообразии различных материальных объектов, форм материи, ее свойств и взаимообусловленностей.

    Обращая свое внимание на окружающий нас мир, мы видим совокупность разнообразных предметов, вещей. Эти предметы обладают самыми различными свойствами. Одни из них имеют большие размеры, другие - меньшие, одни просты, другие - более сложны, одни постигаемы достаточно полно непосредственно чувственным образом, для проникновения в сущность других необходима абстрагирующая деятельность нашего разума. Отличаются эти предметы и по силе своего воздействия на наши органы чувств.

    Однако при всей своей многочисленности и разнообразии самые различные предметы окружающего нас мира имеют один общий, если так можно выразиться, знаменатель, позволяющий объединить их понятием материи. Это общее есть независимость всего многообразия предметов от сознания людей. В то же время это общее в бытии различных материальных образований является предпосылкой единства мира. Однако заметить общее в самых различных предметах, явлениях, процессах - задача далеко не простая. Для этого нужна определенная система сложившихся знаний и развитая способность к абстрагирующей деятельности человеческого разума. Поскольку знания есть продукт приобретенный, причем накапливаемый постепенно, в течение длительного времени, то многие суждения людей о природе и обществе первоначально носили весьма неотчетливый, приближенный, а порой и просто неверный характер. В полной мере это относится и к определению категории материи.

    2. О ПОНЯТИИ «МАТЕРИЯ». СТАНОВЛЕНИЕ И РАЗВИТИЕ ОБЩИХ ПРЕДСТАВЛЕНИЙ О МАТЕРИИ

    2.1 Становление и развитие общих представлений о материи

    Самый беглый анализ представлений древних ученых о материи показывает, что все они по духу своему были материалистическими, но общим их недостатком было, во-первых, сведение понятия материи к какому-то конкретному виду вещества или ряду веществ. А во-вторых, признание материи в качестве строительного материала, некоей первичной неизменной субстанции автоматически исключало выход за пределы имеющихся о ней представлений. Тем самым каким-либо конкретным видом вещества с присущими ему свойствами ограничивалось дальнейшее познание, проникновение в сущность материи. Все же большой заслугой древних материалистов было изгнание представлений о боге-творце и признание взаимосвязи материи и движения, а также вечности их существования.

    Заметный след в развитии учения о материи оставили мыслители Древней Греции Левкипп и особенно Демокрит - родоначальники атомистического учения об окружающем мире. Они впервые высказали мысль о том, что все предметы состоят из мельчайших неделимых частиц - атомов. Первичная субстанция - атомы движутся в пустоте, и их различные сочетания суть те или иные материальные образования. Уничтожение вещей, по Демокриту, означает лишь их разложение на атомы. В самом понятии атома содержится нечто общее, присущее различным телам.

    Весьма важную попытку дать определение материи сделал французский материалист XVIII века Гольбах, который в работе "Система природы" писал, что "по отношению к нам материя вообще есть все то, что воздействует каким-нибудь образом на наши чувства".

    Здесь мы видим стремление выделить то общее в различных формах материи, а именно: что они вызывают у нас ощущения. В этом определении Гольбах уже отвлекается от конкретных свойств предметов и дает представление о материи как абстракции. Вместе с тем определение Гольбаха было ограниченным. Оно не раскрывало до конца сущности всего того, что воздействует на наши органы чувств, оно не раскрывало специфики того, что не может воздействовать на наши чувства. Эта незавершенность предложенного Гольбахом определения материи создавала возможности как для материалистической, так и идеалистической ее трактовки.

    К концу XIX века естествознание, и в частности физика, достигло достаточно высокого уровня своего развития. Были открыты общие и, казалось, незыблемые принципы строения мира. Была открыта клетка, сформулирован закон сохранения и превращения энергии, установлен Дарвиным эволюционный путь развития живой природы, Менделеевым создана периодическая система элементов. Основой бытия всех людей, предметов признавались атомы - мельчайшие, с точки зрения того времени, неделимые частицы вещества. Понятие материи отождествлялось, таким образом, с понятием вещества, масса характеризовалась как мера количества вещества или мера количества материи. Материя рассматривалась вне связи с пространством и временем. Благодаря работам Фарадея, а затем Максвелла, были установлены законы движения электромагнитного поля и электромагнитная природа света. При этом распространение электромагнитных волн связывалось с механическими колебаниями гипотетической среды - эфира. Физики с удовлетворением отмечали: наконец-то, картина мира создана, окружающие нас явления укладываются в предначертанные им рамки.

    На благополучном, казалось, фоне "стройной теории" вдруг последовала целая серия необъяснимых в рамках классической физики научных открытий. В 1896 г. были открыты рентгеновские лучи. В 1896 г. Беккерель случайно обнаружил радиоактивность урана, в этом же году супруги Кюри открывают радий. Томсоном в 1897 г. открыт электрон, а в 1901 г. Кауфманом показана изменчивость массы электрона при его движении в электромагнитном поле. Наш соотечественник Лебедев обнаруживает световое давление, тем самым окончательно утверждая материальность электромагнитного поля. В начале ХХ века Планком, Лоренцом, Пуанкаре и др. закладываются основы квантовой механики, и, наконец, в 1905г. Эйнштейном создается специальная теория относительности.

    Многие физики того периода, мыслящие метафизически, не смогли понять сути этих открытий. Вера в незыблемость основных принципов классической физики привела их к скатыванию с материалистических позиций в сторону идеализма. Логика их рассуждений была такова. Атом - мельчайшая частица вещества. Атом обладает свойствами неделимости, непроницаемости, постоянства массы, нейтральности в отношении заряда. И вдруг оказывается, что атом распадается на какие-то частицы, которые по своим свойствам противоположны свойствам атома. Так, например, электрон имеет изменчивую массу, заряд и т.д. Это коренное отличие свойств электрона и атома привело к мысли, что электрон нематериален. А поскольку с понятием атома, вещества отождествлялось понятие материи, а атом исчезал, то отсюда следовал вывод: "материя исчезла". С другой стороны, изменчивость массы электрона, под которой понималось количество вещества, стала трактоваться как превращение материи в "ничто". Таким образом, рушился один из главнейших принципов материализма - принцип неуничтожимости и несотворимости материи.

    Диалектико-материалистическое определение материи направлено против отождествления понятия материи с ее конкретными видами и свойствами. Тем самым оно допускает возможность существования, а значит, и открытия в будущем новых неизвестных, "диковинных" видов материи. Следует сказать, что в последние годы физики и философы все настойчивее предсказывают такую возможность.

    2.2 Материя в философии

    Материя в философии (от лат. materia - вещество) - философская категория для обозначения объективной реальности, которая отображается нашими ощущениями, существуя независимо от них (объективно).

    Материя является обобщением понятия материального и идеального, в силу их относительности. Тогда как термин «реальность» носит гносиологический оттенок, термин «материя» носит онтологический оттенок.

    Понятие материи является одним из фундаментальных понятий материализма и в частности такого понятия в философии, как диалектический материализм.

    2.3 Материя в физике

    Материя в физике (от лат. materia - вещество) - фундаментальное физическое понятие, связанное с любыми объектами, существующими в природе, о которых можно судить благодаря ощущениям.

    Физика описывает материю как нечто, существующее в пространстве и во времени; либо как нечто, само задающее свойства пространства и времени.

    Изменения во времени, происходящие с различными формами материи , составляют физические явления . Основной задачей физики является описание свойств тех или иных видов материи.

    3. ОСНОВНЫЕ ВИДЫ МАТЕРИИ

    В современном естествознании различают 3 вида материи:

    Вещество -- основной вид материи, обладающий массой. К вещественным объектам относятся элементарные частицы, атомы, молекулы, многочисленные образовавшиеся из них материальные объекты. В химии вещества подразделяются на простые (с атомами одного химического элемента) и сложные (химические соединения). свойства вещества зависят от внешних условий и интенсивности взаимодействия атомов и молекул. Это и обуславливает различные агрегатные состояния вещества (твердое, жидкое, газообразное + плазма при сравнительно высокой температуре) переход вещества из одного состояния в другое можно рассмотреть как один из видов движения материи.

    Физическое поле -- особый вид материи, который обеспечивает физическое взаимодействие материальных объектов и систем.

    Физические поля:

    Электромагнитное и гравитационное

    Поле ядерных сил

    Волновые (квантовые) поля

    Источник физических полей -- элементарные частицы. Направление для электромагнитного поля -- источник, заряженные частицы

    Физические поля, которые создаются частицами переносят взаимодействие между этими частицами с конечной скоростью.

    Квантовые теории -- взаимодействие обусловлено обменом квантами поля между частицами.

    Физический вакуум -- низшее энергетическое состояние квантового поля. Этот термин введен в квантовой теории поля для объяснения некоторых микропроцессов.

    Среднее число частиц (квантов поля) вакууме равно нулю, однако в нем могут рождаться виртуальные частицы, то есть частицы в промежуточном состоянии, существующие короткое время. Виртуальные частицы влияют на физические процессы.

    Принято считать, что не только вещество, но и поле и вакуум имеют дискретную структуру. Согласно квантовой теории поле, пространство и время в очень малых масштабах образуют пространственно-временную среду с ячейками. Квантовые ячейки настолько малы (10-35--10-33), что их можно не учитывать при описании свойств электромагнитных частиц, считая пространство и время непрерывными.

    Вещество воспринимается как непрерывная сплошная среда. для анализа и описания свойств такого вещества в большинстве случаев учитывается только его непрерывность. Однако, то же вещество при объяснении тепловых явлений, химических связей, электромагнитных излучений рассматривается как дискретная среда, которая состоит из взаимодействующих между собой атомов и молекул.

    Дискретность и непрерывность присущи физическому полю, но при решении многих физических задач принято считать гравитационное, электромагнитное и другие поля непрерывными. Однако в квантовой теории поля предполагается, что физические поля дискретны, следовательно, для одних и тех же видов материи характерна прерывность и непрерывность.

    Для классического описания природных явлений достаточно учитывать непрерывные свойства материи, а для характеристики различных микропроцессов -- дискретные.

    4. СВОЙСТВА И АТРИБУТЫ МАТЕРИИ

    Атрибутами материи, всеобщими формами её бытия являются движение , пространство и время , которые не существуют вне материи. Точно так же не может быть и материальных объектов, которые не обладали бы пространственно-временными свойствами.

    Фридрих Энгельс выделил пять форм движения материи:

    физическая;

    химическая;

    биологическая;

    социальная;

    механическая.

    Универсальными свойствами материи являются:

    несотворимость и неуничтожимость

    вечность существования во времени и бесконечность в пространстве

    материи всегда присущи движение и изменение, саморазвитие, превращение одних состояний в другие

    детерминированность всех явлений

    причинность -- зависимость явлений и предметов от структурных связей в материальных системах и внешних воздействий, от порождающих их причин и условий

    отражение -- проявляется во всех процессах, но зависит от структуры взаимодействующих систем и характера внешних воздействий. Историческое развитие свойства отражения приводит к появлению высшей его формы -- абстрактного мышления .

    Универсальные законы существования и развития материи:

    Закон единства и борьбы противоположностей

    Закон перехода количественных изменений в качественные

    Закон отрицания отрицания

    Изучая свойства материи, можно заметить их неразрывную диалектическую взаимосвязь. Одни свойства взаимообусловливают другие ее свойства.

    Материя имеет и сложное структурное строение. На основе достижений современной науки мы можем указать некоторые ее виды и структурные уровни.

    Известно, что до конца XIX в. естествознание не шло дальше молекул и атомов. С открытием радиоактивности электронов начался прорыв физики в более глубокие области материи. Причем, подчеркнем еще раз, принципиально новым при этом является отказ от абсолютизации каких-то первокирпичиков, неизменной сущности вещей. В настоящее время физикой открыто множество различных элементарных частиц. Оказалось, что каждая частица имеет свой антипод - античастицу, имеющую с ней одинаковую массу, но противоположный заряд, спин и т.д. Нейтральные частицы также имеют свои античастицы, отличающиеся противоположностью спина и других характеристик. Частицы и античастицы, взаимодействуя, "аннигилируют", т.е. исчезают, превращаясь в другие частицы. Например, электрон и позитрон, аннигилируя, превращаются в два фотона.

    Симметричность элементарных частиц позволяет высказать предположение о возможности существования антимира, состоящего из античастиц, антиатомов и антивещества. Причем все законы, действующие в антимире, должны быть аналогичными законам нашего мира.

    Общее количество частиц, включая и так называемые "резонансы", временной промежуток жизни которой чрезвычайно мал, достигает сейчас приблизительно цифры 300. Предсказывается существование гипотетических частиц - кварков, имеющих дробный заряд. Кварки пока не открыты, но без них невозможно удовлетворительно объяснить некоторые квантово-механические явления. Не исключено, что в недалеком будущем это теоретическое предсказание найдет экспериментальное подтверждение.

    Систематизируя известные сведения о строении материи, можно указать следующую ее структурную картину.

    Во-первых, следует выделить три основных вида материи, к которым относятся: вещество, антивещество и поле. Известны электромагнитные, гравитационные, электронные, мезонные и др. поля. Вообще говоря, с каждой элементарной частицей связано соответствующее ей поле. К веществу относятся элементарные частицы (исключая фотоны), атомы, молекулы, макро-и мегатела, т.е. все то, что имеет массу покоя.

    Все указанные виды материи диалектически взаимосвязаны между собой. Иллюстрацией этого является открытие в 1922 г. Луи де Бройлем двойственного характера элементарных частиц, которые в одних условиях обнаруживают свою корпускулярную природу, а в других - волновые качества.

    Во-вторых, в самом общем виде можно выделить следующие структурные уровни материи:

    1. Элементарные частицы и поля.

    2. Атомно-молекулярный уровень.

    3. Все макротела, жидкости и газы.

    4. Космические объекты: галактики, звездные ассоциации, туманности и т.д.

    5. Биологический уровень, живую природу.

    6. Социальный уровень - общество.

    Каждый структурный уровень материи в своем движении, развитии подчиняется своим специфическим законам. Так, например, на первом структурном уровне свойства элементарных частиц и полей описываются законами квантовой физики, которые носят вероятностный, статистический характер. Свои законы действуют в живой природе. По особым законам функционирует человеческое общество. Имеется целый ряд законов, действующих на всех структурных уровнях материи (законы диалектики, закон всемирного тяготения и др.), что является одним из свидетельств неразрывной взаимосвязи всех этих уровней.

    Всякий более высокий уровень материи включает в себя более низкие ее уровни. Например, атомы и молекулы включают в себя элементарные частицы, макротела состоят из элементарных частиц, атомов и молекул. Однако материальные образования на более высоком уровне не являются просто механической суммой элементов низшего уровня. Это качественно новые материальные образования, со свойствами, коренным образом отличающимися от простой суммы свойств составных элементов, что и находит свое выражение в специфике законов, описывающих их. Известно, что атом, состоящий из разнородно заряженных частиц, нейтрален. Или классический пример. Кислород поддерживает горение, водород горит, а вода, молекулы которой состоят из кислорода и водорода, гасит огонь. Далее. Общество есть совокупность отдельных людей - биосоциальных существ. Вместе с тем общество несводимо ни к отдельному человеку, ни к некоторой сумме людей.

    В-третьих, исходя из приведенной выше классификации, можно выделить три различных сферы материи: неживую, живую и социально-организованную - общество. Выше мы рассматривали эти сферы в иной плоскости. Дело в том, что всякая классификация относительна, а поэтому в зависимости от потребностей познания можно давать самую различную классификацию уровней, сфер и т.д., отражающих сложную, многогранную структуру материи. Подчеркнем, что избранное то или иное основание классификации есть лишь отражение многообразия самой объективной реальности. Можно выделить микро-, макро- и мегамир. Этим классификация структуры материи не исчерпывается, возможны и другие подходы к ней.

    5. ФОРМЫ ДВИЖЕНИЯ МАТЕРИИ

    материя бытие движение

    Формы движения материи -- основные типы движения и взаимодействия материальных объектов, выражающие их целостные изменения. Каждому телу присуще не одна, а ряд форм материального движения. В современной науке выделяются три основные группы, которые в свою очередь имеют множество своих специфических форм движения:

    в неорганической природе,

    пространственное перемещение;

    движение элементарных частиц и полей -- электромагнитные, гравитационные, сильные и слабые взаимодействия, процессы превращения элементарных частиц и др.;

    движение и превращение атомов и молекул, включающее в себя химические реакции;

    изменения в структуре макроскопических тел -- тепловые процессы, изменение агрегатных состояний, звуковые колебания и другое;

    геологические процессы;

    изменение космических систем различных размеров: планет, звезд, галактик и их скоплений.;

    в живой природе,

    обмен веществ,

    саморегуляция, управление и воспроизводство в биоценозах и других экологических системах;

    взаимодействие всей биосферы с природными системами Земли;

    внутриорганизменные биологические процессы, направленные на обеспечение сохранения организмов, поддержание стабильности внутренней среды в меняющихся условиях существования;

    надорганизменные процессы выражают отношения между представителями различных видов в экосистемах и определяют их численность, зону распространения (ареал ) и эволюцию;

    в обществе,

    многообразные проявления сознательной деятельности людей;

    все высшие формы отражения и целенаправленного преобразования действительности.

    Более высокие формы движения материи исторически возникают на основе относительно низших и включают их в себя в преобразованном виде. Между ними существует единство и взаимное влияние. Но высшие формы движения качественно отличны от низших и несводимы к ним. Раскрытие материальных взаимоотношений имеет огромное значение для понимания единства мира, исторического развития материи, для познания сущности сложных явлений и практического управления ими.

    6. СТРУКТУРНЫЕ УРОВНИ ОРГАНИЗАЦИИ МАТЕРИИ

    Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами.

    Критерием для выделения различных структурных уровней служат следующие признаки:

    пространственно-временные масштабы;

    совокупность важнейших свойств;

    специфические законы движения;

    степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира;

    некоторые другие признаки.

    Микро-, макро- и мегамиры

    Известные в настоящее время структурные уровни материи могут быть выделены по вышеперечисленным признакам в следующие области.

    1. Микромир. Сюда относятся:

    частицы элементарные и ядра атомов -- область порядка 10-15 см;

    атомы и молекулы 10-8--10-7 см.

    2. Макромир: макроскопические тела 10-6--107 см.

    3. Мегамир: космические системы и неограниченные масштабы до 1028 см.

    Разные уровни материи характеризуются разными типами связей.

    В масштабах 10-13 см -- сильные взаимодействия, целостность ядра обеспечивается ядерными силами.

    Целостность атомов, молекул, макротел обеспечивают электромагнитные силы.

    В космических масштабах -- гравитационные силы.

    С увеличением размеров объектов уменьшается энергия взаимодействия. Если принять энергию гравитационного взаимодействия за единицу, то электромагнитное взаимодействие в атоме будет в 1039 больше, а взаимодействие между нуклонами -- составляющими ядро частицами -- в 1041 раз больше. Чем меньше размеры материальных систем, тем более прочно связаны между собой их элементы.

    Деление материи на структурные уровни носит относительный характер. В доступных пространственно-временных масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимодействующих систем, начиная от элементарных частиц и кончая Метагалактикой.

    Говоря о структурности -- внутренней расчлененности материального бытия, можно отметить, что сколь бы ни был широк диапазон мировидения науки, он тесно связан с обнаружением все новых и новых структурных образований. Например, если раньше взгляд на Вселенную замыкался Галактикой, затем расширился до системы галактик, то теперь изучается Метагалактика как особая система со специфическими законами, внутренними и внешними взаимодействиями.

    7. ЗАКЛЮЧЕНИЕ

    В основе всех естественнонаучных дисциплин лежит понятие материи, законы движения и изменения которой изучаются.

    Неотъемлемым атрибутом матери является ее движение, как форма существования материи, ее важнейший атрибут. Движение в самом общем виде - это всякое изменение вообще. Движение материи абсолютно, тогда как всякий покой относителен.

    Современные ученые-физики опровергли представление о пространстве как о пустоте, и о времени, как о едином для Вселенной.

    Весь опыт человечества, в том числе данные научных исследований, говорит о том, что нет вечных предметов, процессов и явлений. Даже небесные тела, существующие миллиарды лет, имеют начало и конец, возникают и гибнут. Ведь, погибая или разрушаясь, предметы не исчезают бесследно, а превращаются в другие предметы и явления. Цитата из идей Бердяева подтверждает это: «...Но для философии, существовавшее время, прежде всего, а затем и пространство, есть порождение событий, актов в глубине бытия, до всякой объективности. Первичный акт не предполагает ни времени, ни пространства, он порождает время и пространство».

    Материя вечна, несотворима и неуничтожима. Она существовала всегда и везде, всегда и везде будет существовать.

    ЛИТЕРАТУРА

    1. Басаков М. И., Голубинцев В. О., Каждан А.Э. К концепции современного естествознания. ? Ростов н/Д: Феникс, 1997. ? 448с.

    2. Дубнищева Т.Я. Концепции современного естествознания.- 6-е изд., испр. и доп. -- М.: Издательский центр «Академия», 2006. -- 608 с.

    3. Интернет-ресурс «Википедия» - www.wikipedia.org

    4. Садохин А. П. Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления. ? М.: ЮНИТИ-ДАНА, 2006. ? 447с.

    Размещено на www.allbest.ru

    Подобные документы

      Проблема определения сущности материи, история ее изучения античными и современными учеными. Характеристика диалектической взаимосвязи свойств и структурных элементов материи. Основные причины и формы движения материи, их качественная специфика.

      реферат , добавлен 14.12.2011

      Понимание материи как объективной реальности. Материя в истории философии. Уровни организации неживой природы. Строение материи на биологическом и социальном уровнях. Философская категория материи и ее фундаментальная роль в понимании мира и человека.

      реферат , добавлен 06.05.2012

      Материя, как философское понятие. Движение, пpостpанство и вpемя - всеобщие атpибуты и основные способы существования матеpии. Диалектика и современная проблематика материи. Понятие материи - результат обобщения всех понятий о материальном мире.

      реферат , добавлен 05.06.2009

      Исследование основных принципов бытия, его структуры и закономерностей. Бытие социальное и идеальное. Материя как объективная реальность. Анализ современных представлений о свойствах материи. Классификация форм движения материи. Уровни живой природы.

      презентация , добавлен 16.09.2015

      Комплексный анализ формирования и эволюции философского понятия материи. Общая характеристика структуры материи, изучение систематизации и оценка общих составляющих вопросов системности материи. Философские вопросы материального единства мира и природы.

      курсовая работа , добавлен 08.01.2012

      Понятие материи как фундаментального понятия философии и естествознания. История возникновения и развития данного понятия. Религиозно-идеалистическое понимание материи в древнегреческой философии. Ленинское понимание и определение сущности материи.

      реферат , добавлен 22.11.2009

      Бытие как универсальная категория единства Мира. Проблема бытия в истории философской мысли. Материя как фундаментальная категория философии. Основные свойства материи. Методологические принципы при разработке классификации форм движения материи.

      реферат , добавлен 12.06.2012

      Античные варианты определения материи. Атомистическая теория строения природного вещества. Формы существования материи. Пространство и время как всеобщие формы бытия материального мира. Особенности образования пространственно-временного континуума.

      реферат , добавлен 27.12.2009

      Возникновение понятия "материя" в философии и науке. Система взглядов на окружающую нас действительность. Пространство и время как формы существования материи. Атомистическая модель мира. Проблема бытия и становления. Метафизические представления.

      контрольная работа , добавлен 20.03.2009

      Материя как одно фундаментальнейших понятий философии, представление о ней в различных философских системах. Материалистические представления (К. Маркса, Ф. Энгельса и В. Ленина) о строении материи. Свойства, основные формы и способы ее существования.