Войти
В помощь школьнику
  • Подготовка соборного уложения
  • Пахнет жареным А всё, что не по графику, – на фиг
  • Прилагательные характеризующие человека с хорошей стороны — самый полный список Современные прилагательные список
  • Чародольский князь (Ведьмин крест) Чародол 2 чародольский князь читать
  • CityTLT - Мифология - Древняя Греция - Аякс Кто такой аякс в древней греции
  • Любопытные факты о южном и северном полюсах планеты земля Среди торосов и айсбергов
  • Что называется коэффициентом приведения длины стержня. Научная электронная библиотека. Формула Эйлера для определения критической силы

    Что называется коэффициентом приведения длины стержня. Научная электронная библиотека. Формула Эйлера для определения критической силы

    ДЛИНА СТЕРЖНЯ ПРИВЕДЕННАЯ условная длина сжатого стержня с заданными условиями закрепления его концов, длина которого по значению критической силы эквивалентна длине стержня с шарнирно закреплёнными концами

    (Болгарский язык; Български) - приведена дължина на прът

    (Чешский язык; Čeština) - vzpěrná délka prutu

    (Немецкий язык; Deutsch) - reduzierte Stablänge; ideelle Stablänge

    (Венгерский язык; Magyar) - rúd kihajlás! hossza

    (Монгольский язык) - туйвангийн хөрвүүлсэн урт

    (Польский язык; Polska) - długość sprowadzona pręta

    (Румынский язык; Român) - lungime convenţională a barei

    (Сербско-хорватский язык; Српски језик; Hrvatski jezik) - redukovaná dužina štapa

    (Испанский язык; Español) - luz efectiva de una barra

    (Английский язык; English) - reduced length of bar

    (Французский язык; Français) - longueur réduite d"une barre

    Строительный словарь .

    Смотреть что такое "ДЛИНА СТЕРЖНЯ ПРИВЕДЕННАЯ" в других словарях:

      длина стержня приведенная - Условная длина сжатого стержня с заданными условиями закрепления его концов, длина которого по значению критической силы эквивалентна длине стержня с шарнирно закреплёнными концами [Терминологический словарь по строительству на 12 языках (ВНИИИС… …

      приведенная длина стержня - Условная длина однопролетного стержня, критическая сила которого при шарнирном закреплении его концов такая же, как для заданного стержня. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно… … Справочник технического переводчика

      Схемы деформирования и коэффициенты при различных условиях закрепления и способе приложения нагрузки Гибкость стержня отношение расчетной длины стержня … Википедия

      - (силомер). Этим именем называют в курсах физики пружинные весы, а в механике приборы для измерения механической работы (см). Самое старинное изображение пружинных весов, по словам Карстена, напечатано в 1726 г., без описания, в книге: Leupold,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

      МЕРЫ - МЕРЫ, определенные физ. величины, с которыми сравниваются другие величины с целью измерения последних. Основные меры наиболее распространенной метрической системы: метр длина при 0° платинового стержня, хранящегося в Международном бюро мер и… … Большая медицинская энциклопедия

    Для нахождения критических напряжений надо вычислить критическую силу , т. е. наименьшую осевую сжимающую силу, способную удержать в равновесии слегка искривленный сжатый стержень.

    Эту задачу впервые решил академик Петербургской Академии наук Л. Эйлер в 1744 году.

    Заметим, что самая постановка задачи иная, чем во всех ранее рассмотренных отделах курса. Если раньше мы определяли деформацию стержня при заданных внешних нагрузках, то здесь ставится обратная задача: задавшись искривлением оси сжатого стержня, следует определить, при каком значении осевой сжимающей силы Р такое искривление возможно.

    Рассмотрим прямой стержень постоянного сечения, шарнирно опертый по концам; одна из опор допускает возможность продольного перемещения соответствующего конца стержня (рис.3). Собственным весом стержня пренебрегаем.

    Рис.3. Расчетная схема в «задаче Эйлера»

    Нагрузим стержень центрально приложенными продольными сжимающими силами и дадим ему весьма небольшое искривление в плоскости наименьшей жесткости; стержень удерживается в искривленном состоянии, что возможно, так как .

    Деформация изгиба стержня предположена весьма малой, поэтому для решения поставленной задачи можно воспользоваться приближенным дифференциальным уравнением изогнутой оси стержня. Выбрав начало координат в точке А и направление координатных осей, как показано на рис.3, имеем:

    (1)

    Возьмем сечение на расстоянии х от начала координат; ордината изогнутой оси в этом сечении будет у , а изгибающий момент равен

    По исходной схеме изгибающий момент получается отрицательным, ординаты же при выбранном направлении оси у оказываются положительными. (Если бы стержень искривился выпуклостью книзу, то момент был бы положительным, а у - отрицательным и .)



    Приведенное только что дифференциальное уравнение принимает вид:

    деля обе части уравнения на EJ и обозначая дробь через приводим его к виду:

    Общий интеграл этого уравнения имеет вид:

    Это решение заключает в себе три неизвестных: постоянные интегрирования а и b и значение , так как величина критической силы нам неизвестна.

    Краевые условия на концах стержня дают два уравнения:

    в точке А при х = 0 прогиб у = 0,

    В х = 1 у = 0.

    Из первого условия следует (так как и cos kx =1)

    Таким образом, изогнутая ось является синусоидой с уравнением

    (2)

    Применяя второе условие, подставляем в это уравнение

    у = 0 и х = l

    получаем:

    Отсюда следует, что или а или kl равны нулю.

    Если а равно нулю, то из уравнения (2) следует, что прогиб в любом сечении стержня равен нулю, т. е. стержень остался прямым. Это противоречит исходным предпосылкам нашего вывода. Следовательно, sin kl = 0, и величина может иметь следующий бесконечный ряд значений:

    где - любое целое число.

    Отсюда , а так как то

    Иначе говоря, нагрузка, способная удержать слегка искривленный стержень в равновесии, теоретически может иметь целый ряд значений. Но так как отыскивается, и интересно с практической точки зрения, наименьшее значение осевой сжимающей силы, при которой становится возможным продольный изгиб, то следует принять .

    Первый корень =0 требует, чтобы было равно нулю, что не отвечает исходным данным задачи; поэтому этот корень должен быть отброшен и наименьшим корнем принимается значение . Тогда получаем выражение для критической силы:

    Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).

    Рис.1

    Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой

    а изогнутая ось представляет синусоиду

    Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:

    Значит, а - это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.

    Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.

    Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F ; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда будет равно

    Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.

    Формула Эйлера : , где Е – модуль Юнга; – минимальный главный центральный момент инерции поперечного сечения стержня (очевидно, что при потере устойчивости изгиб стержня произойдет в плоскости наименьшей изгибной жесткости); – коэффициент приведения длины, зависящий от формы потери устойчивости; l – длина стержня. Произведение - приведенная длина стержня .

    Формула Эйлера для шарнирно-опертого стержня, сжатого по концам

    Для шарнирно опертого стержня, сжатого по концам, формула Эйлера для определения : (коэффициент приведения длины ).

    Основной случай потери устойчивости – случай, когда при закреплении концов стержня и приложении нагрузки форма потери устойчивости представляет собой одну полуволну синусоиды (рис. 12.2, а).

    Некоторые другие способы закрепления концов стержня (нагрузка по-прежнему приложена по торцам) легко могут быть приведены к основному случаю потери устойчивости путем сопоставления формы изогнутой оси с формой потери устойчивости шарнирно опертого стержня.

    Формула Эйлера для стержня с защемленным и свободным концами

    При потере устойчивости стержень с жестко защемленным одним и свободным другим концом изогнется, как показано на (рис. 12.2, б). Форма потери устойчивости этого стержня представляет собой четверть синусоиды. Приведенная длина равна (полуволна синусоиды имеет длину ), а эйлерова сила в четыре раза меньше, чем для основного случая. Формула Эйлера для стержня с защемленным и свободным концами: .

    Формула Эйлера для стержня с защемленными концами

    Для стержня, оба конца которого жестко защемлены, форма потери устойчивости такова, что одна полуволна синусоиды занимает половину длины стержня (рис. 12.2, в). Поэтому приведенная длина стержня равна (), а формула эйлеровой нагрузки .

    Критической () принято называть истинную, а эйлеровой () – теоретическую нагрузку, при которой происходит потеря .

    Формула Эйлера получена из предположения, что в момент потери устойчивости напряжения сжатия в стержне не превышают предела пропорциональности : . Модуль Юнга (Е) в формуле Эйлера свидетельствует о том, что вплоть до момента потери устойчивости выполнялся . Если потеря устойчивости происходит при напряжении меньшем, чем , то .

    Для стержней, теряющих устойчивость при напряжении, превышающем предел пропорциональности (), использование формулы Эйлера принципиально неправильно и крайне опасно, поскольку критическая нагрузка (истинная нагрузка, при которой происходит потеря устойчивости) меньше эйлеровой нагрузки: .

    Пределы применимости формулы Эйлера

    Пределы применимости формулы Эйлера можно установить, предварительно введя понятие гибкости стержня. Определим эйлеровы напряжения , исходя из формулы Эйлера:

    .

    Рассмотрим стержень длиной /, один конец которого закреплен жестко, а на другом свободном конце приложена центральная сжимающая сила F (рис. 15.8).

    Рис . 15.8.

    Общее решение задачи, записанное в виде формулы (15.15), в этом случае остается в силе. Что же касается граничных условий, то они запишутся в следующем виде:

    Искомое решение можно найти и иначе. Условно продолжим стержень вправо от защемленной опоры на длину / симметрично левой части, и тогда вместо граничных условий (15.21), получим новые условия:

    Таким образом, новая задача фактически совпала с рассмотренной выше задачей Эйлера. Различие состоит только в том, что в конечном результате (15.20) длину / следует заменить на 21:

    Формулу Эйлера можно обобщить также на другие случаи закрепления концов стержня. Для этого в расчетную формулу Эйлера вводится поправочный коэффициент р, называемый коэффициентом приведения длины стержня:

    Коэффициент численно равен обратному числу от количества полуволн синусоиды, укладывающихся вдоль изогнутой оси стержня. На рис. 15.9 представлены различные виды крепления концов стержня и соответствующие им коэффициенты приведения длины.

    Можно показать, что для первых трех стержней, изображенных на рис. 15.9, а - в, значения коэффициента приведенной длины точное. Что же касается четвертой задачи, то для нее значение приведенной длины определено приближенно. Рассмотрим задачу определения р для этого случая (рис. 15.9, г).

    Уравнение деформированной оси стержня имеет вид

    Здесь R - величина горизонтальной реактивной силы верхней опоры.


    Рис. 15.9.

    После преобразования уравнения (15.25) с учетом формулы (15.13) получим

    Уравнение (15.26), в отличие от уравнения (15.14), является неоднородным. Его общее решение запишется так же, как и общее решение соответствующего однородного уравнения (15.14). Частное решение имеет вид

    Таким образом, решение уравнение (15.25) запишется в форме

    В этом решении величина R играет роль третьей неизвестной константы, п поэтому для решения этой задачи необходимо сформулировать третье граничное условие:

    Используя граничные условия, получим систему трех нелинейных уравнений

    Раскрывая определитель, приходим к следующему нелинейному уравнению:

    Решение нелинейного уравнения (15.29) можно получить как численно, так и графически. Для наглядности выберем второй способ решения. Построим графики следующих функций: у = tgkl, у = kl (рис. 15.10).

    Рис. 15.10. Графики функций у = tg kl, у = kl

    Точка пересечения графиков С соответствует значению корня kl ~ 4,5, откуда

    В формулу для критической силы входит главный центральный момент инерции относительно оси Oz - / Ю1 . = так как мы загодя сделали предположение о том, что стержень теряет устойчивость и изгибается в направлении, перпендикулярном к оси Ох. Однако, как уже отмечалось, если при этом условия закрепления опор позволяют стержню деформироваться в любом направлении равновероятно, то стержень потеряет устойчивость в том направлении, в котором момент инерции его поперечного сечения имеет минимальное значение 7 min .

    Если же условия закрепления более сложные, то для оценки критической силы необходим дополнительный анализ. Для примера рассмотрим стержень (рис. 15.11), левая опора которого жестко заделана. Что касается правой опоры, то здесь заданы условия подвижной заделки, разрешающей перемещения и повороты в плоскости ху и запрещающие их в плоскости zx. Поперечное сечение стержня - прямоугольное с отношением сторон Н = 2В.


    Рис. 15.11.

    Закреплению стержня в плоскости ху соответствует коэффициент приведения длины р = 2 (см. рис. 15.8), а в плоскости xz - р = 0,5 (см. рис. 15.9, а).

    Подсчитаем критические силы в предположении о том, что потеря устойчивости произойдет: 1) в плоскости ху и 2) в плоскости xz:


    Сравнивая значения, заключаем: потеря устойчивости произойдет в плоскости ху , поскольку этому варианту соответствует меньшее значение критической силы.

    Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).

    Рис.1

    Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой

    а изогнутая ось представляет синусоиду

    Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:

    Значит, а — это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.

    Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.

    Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F ; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда

    Таким образом, критическое напряжение для стержней данного материала обратно пропорционально квадрату отношения длины стержня к наименьшему радиусу инерции его поперечного сечения. Это отношение называется гибкостью стержня и играет весьма важную роль во всех проверках сжатых стержней на устойчивость.

    Из последнего выражения видно видно, что критическое напряжение при тонких и длинных стержнях может быть весьма малым, ниже основного допускаемого напряжения на прочность . Так, для стали 3 с пределом прочности допускаемое напряжение может быть принято ; критическое же напряжение для стержня с гибкостью при модуле упругости материала будет равно

    Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.

    Влияние способа закрепления концов стержня.

    Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выражение критической силы справедливо лишь для стержня с шарнирно-опертыми концами и изменится при изменении условий закрепления концов стержня.

    Закрепление сжатого стержня с шарнирно-опертыми концами мы будем называть основным случаем закрепления. Другие виды закрепления будем приводить" к основному случаю.

    Если повторить весь ход вывода для стержня, жестко защемленного одним концом и нагруженного осевой сжимающей силой на другом конце (Рис.2), то мы получим другое выражение для критической силы, а следовательно, и для критических напряжений.


    Рис.2. Расчетная схема стержня с жесткозакрепленным одним концом.

    Предоставляя право студентам проделать это во всех подробностях самостоятельно, подойдем к выяснению критической силы для этого случая путем следующих простых рассуждений.

    Пусть при достижении силой Р критического значения колонна будет сохранять равновесие при слабом выпучивании по кривой АВ . Сравнивая два варианта изгиба видим, что изогнутая ось стержня, защемленного одним концом, находится совершенно в тех же условиях, что и верхняя часть стержня двойной длины с шарнирно-закрепленными концами.

    Значит, критическая сила для стойки длиной с одним защемленным, а другим свободным концами будет та,же, что для стойки с шарнирно-опертыми концами при длине :

    Если мы обратимся к случаю стойки, у которой оба конца защемлены и не могут поворачиваться (Рис.3), то заметим, что при выпучивании, по симметрии, средняя часть стержня, длиной , будет работать в тех же условиях, что и стержень при шарнирно-опертых концах (так как в точках перегиба С и D изгибающие моменты равны нулю, то эти точки можно рассматривать как шарниры).


    Рис.3. Расчетная схема с жесткозакреплеными торцами.

    Поэтому критическая сила для стержня с защемленными концами, длиной , равна критической силе для стержня основного случая длиной :

    Полученные выражения можно объединить с формулой для критической силы основного случая и записать:

    здесь — так называемый коэффициент длины, равный:

    Для стержня, изображенного на рис.4, с одним защемленным, а другим шарнирно-опертым концами, коэффициент оказывается примерно равным , а критическая сила:

    Рис.4. Потеря устойчивости стержня с одним жесткозакрепленным и другим шарнирно-опорным торцом

    Величина называется приведенной (свободной) длиной, при помощи коэффициента длины любой случай устройства опор стержня можно свести к основному; надо лишь при вычислении гибкости вместо действительной длины стержня ввести в расчет приведенную длину . Понятие о приведенной длине было впервые введено профессором Петербургского института инженеров путей сообщения Ф. Ясинским).

    На практике, однако, почти никогда не встречаются в чистом виде те закрепления концов стержня, которые мы имеем на наших расчетных схемах.

    Вместо шаровых опор обычно применяются цилиндрические шарниры. Подобные стержни следует считать шарнирно-опертыми при выпучивании их в плоскости, перпендикулярной к оси шарниров; при искривлении же в плоскости этих осей концы стержней следует считать защемленными (с учетом оговорок, приведенных ниже для защемленных концов).

    В конструкциях очень часто встречаются сжатые стержни, концы которых приклепаны или приварены к другим элементам, часто еще с добавлением в месте прикрепления фасонных листов. Такое закрепление, однако, трудно считать защемлением, так как части конструкции, к которым прикреплены эти стержни, не являются абсолютно жесткими.

    Между тем, достаточно возможности уже небольшого поворота опорного сечения в защемлении, чтобы оно оказалось в условиях, очень близких к шарнирному опиранию. Поэтому на практике недопустимо рассчитывать такие стержни, как стойки с абсолютно защемленными концами. Лишь в тех случаях, Когда имеет место очень надежное защемление концов, допускается небольшое (процентов на 10—20) уменьшение свободной длины стержня.

    Наконец, на практике встречаются стержни, опирающиеся на соседние элементы по всей плоскости опорных поперечных сечений. Сюда относятся деревянные стойки, отдельно стоящие металлические колонны, притянутые болтами к фундаменту, и т. д. При тщательном конструировании опорного башмака и соединения его с фундаментом можно считать эти стержни имеющими защемленный конец. Сюда же относятся мощные колонны с цилиндрическим шарниром при расчете их на выпучивание в плоскости оси шарнира. Обычно же трудно рассчитывать на надежное и равномерное прилегание плоского концевого сечения сжатого стержня к опоре. Поэтому грузоподъемность таких стоек обычно мало превышает грузоподъемность стержней с шарнирно-опертыми концами.

    Значения критических нагрузок могут быть получены в виде формул типа эйлеровой и для стержней переменного сечения, а также при действии нескольких сжимающих сил.