Войти
В помощь школьнику
  • Химические свойства цинка и его соединений
  • Древняя история Донбасса
  • Увеличение мощности магнита
  • Лихачев Дмитрий Сергеевич
  • Маршал рокоссовский константин константинович
  • Английские пословицы на все случаи жизни
  • Постоянные магниты - виды и свойства, взаимодействие магнитов. Увеличение мощности магнита

    Постоянные магниты - виды и свойства, взаимодействие магнитов. Увеличение мощности магнита

    Магниты не оказывают влияние на такие вещества, как дерево, бумага, пластик и даже некоторые металлы, например алюминий, из которых делают банки для напитков. Если магниты оказываются вблизи объектов, содержащих железо, они притягивают их к себе невидимой силой. Когда два магнита находятся рядом, они могут притягиваться (стремиться приблизиться друг к другу) или отталкиваться (отдаляться друг от друга).

    Что такое магнит?

    Магнит – это объект, который производит силу, называемую магнетизмом. Магнитное поле – область, в которой обнаруживаются магнитные силы. Наибольший магнетизм проявляется в двух местах магнита – на его полюсах. Один называют севером, или плюсом, другой – югом, или минусом. Северный полюс одного магнита отталкивает северный полюс другого, но притягивает его юг. Основной закон магнетизма гласит, что одноимённые полюса отталкиваются, а разноимённые притягиваются.

    Типичный магнит в форме бруска сделан из стали. Его магнитные силовые линии в виде дуги проходят от одного полюса к другому. Магнит может быть и другой формы: например, в виде подковы – с полюсом на каждом его конце; в виде диска – с полюсом на каждой стороне; в виде кольца – с одним полюсом на внешней его части (ободе)и другим полюсом на внутренней части.

    Как образуется магнетизм?

    Он возникает благодаря движению тех же частиц, что создают электричество, — электронов атомов. Электроны движутся вокруг ядер в атомах и вокруг самих себя, ядра атомов также вращаются. Обычно электроны кружат случайным образом, под разными углами. Но в магните, по-видимому, вращение электронов упорядочивается, их малые силы складываются, создавая общую силу – магнетизм.

    К каким веществам относятся магнетики?

    Самый простой магнетик, то есть материал, который притягивается магнитом, — это железо. Сталь содержит большой процент железа, а значит, она тоже является магнетиком. Менее распространённые металлы никель и кобальт и редкие металлы неодим, годолиний и диспрозий проявляют незначительные магнитные свойства.

    Горная порода, богатая железом и названная магнетиком, или магнитным железняком, обладает природным магнетизмом. Длинные и тонкие кусочки этой породы использовали для первых магнитных компасов.

    Керамические диски, положенные друг на друга, используют как изоляторы. Это помогает предотвратить потери мощной электрической энергии в высоковольтных линиях, то есть не допустить утечек или резких переходов энергии в землю. Однако если сила электричества велика, 0,5млн. вольт (В) или более, а воздух очень влажный (вода – хороший проводник электричества), то электричество может уходить в виде искры в землю.

    Магнитное притяжение

    Земля как магнит

    Наша планета является огромным магнитом. Внутри земного ядра, образованного горными породами со значительным содержанием железа, очень большое давление и высокая температура. Земля постоянно вращается, поэтому расплавленные горные породы ядра безостановочно текут. Именно движущие железосодержащие массы и создают магнитное поле, которое достигает поверхности Земли и продолжается вокруг неё в космосе. Как и любое магнитное поле, оно ослабевает на больших расстояниях. Магнитные полюса Земли не совпадают с географическими и находятся на некотором расстоянии от Северного и Южного полюсов. Через эти географические полюса проходит географическая ось, вокруг которой вращается Земля.

    Природный магнетизм Земли возникает в его ядре. Но магнитное поле простирается на сотни километров в космосе. Магнитный Северный полюс находится возле острова Батерст в северной Канаде, на расстоянии 1000 км от географического Северного полюса. Магнитный Южный полюс находится в океане возле Земли Уилкса (Антарктида), на расстоянии 2000 км от географического Южного полюса.

    1. Почему неодимовые магниты с покрытием?

    Неодимовый магнит в основном своем составе содержит спрессованные и спеченные порошки неодима, железа и бора, причем железа там наибольшее количество. Когда магниты подвергаются воздействию атмосферного воздуха, железо в магните может ржаветь и испортить магнит, потому что железо легко окисляется. Стоит заметить что железный порошок окисляется гораздо интенсивнее чем литая заготовка.Таким образом, чтобы предотвратить магнит от коррозии, магниты должны быть покрыты антикоррозионным покрытием.

    2. Какой тип покрытия магнитов лучше?

    Наиболее распространенные типы покрытий неодимовых магнитов - это никель, цинк, эпоксидные покрытия, золото, серебро. Более всех от коррозии магниты защищают эпоксидные покрытия, и также никель. Наши магниты в основном имеют трехслойное покрытие Никель - Медь - Никель (Ni-Cu-Ni).

    3. Какой тип магнита самый сильный?

    На сегодня неодимовые (NdFeB) магниты являются сильнейшими магнитами в мире.

    4. Вы можете изготовить или у вас есть однополюсный магнит? или - можно ли распилить магнит на два полюса?

    Нет, не можем. Никто не может поставлять монопольный магнит, потому что таких магнитов не существует, все магниты имеют хотя бы два полюса. Даже если Вы попытаетесь разрезать магнит пополам - обе половинки магнитов "перемагнитятся" и образуют на себе по 2 полюса.

    5. Что такое максимальная рабочая температура?

    6. Что такое Температура Кюри для магнита?

    7. Будет ли неодимовый магнит терять свою силу со временем?

    Нет, неодимовый магнит будет держать намагниченность всегда. Естественную потерю магнитных свойств в 1-2% за 10 лет вы не заметите.

    8. Как определить силу магнита, в чем измеряется сила магнита?

    Для этого используются специальные приборы - Гауссметры, Тесламетры, с их помощью измеряется плотность магнитного поля на поверхности магнита. Она измеряется в Гауссах или Тесла. Экспериментально некоторые определяют силу с использованием стальной пластины и динамометра, удерживающая сила магнита, который находится в контакте с плоской стальной пластиной измеряется в килограммах. Нужно понимать, что это не есть какая -то физическая величина или системная единица, т.е. показания приблизительные.

    9. У магнита один полюс сильнее, чем другой?

    Нет, у правильно намагниченного магнита оба полюса одинаково сильны.

    10. Как определить полюса магнита?

    Вы можете использовать компас, или другой магнит, с уже определенным полюсом. Принцип прост - одинаковые полюса -отталкиваются, противоположные полюса магнитов - притягиваются.

    11. Магнитят ли неодимовые магниты золото? (серебро, "нержавейку", медь, монеты и т.д.)?

    Нет. Точнее сказать - да, все металлы магнитятся, но лучше всех - только железосодержащие. На такие металлы как медь, золото, серебро и т.д. даже магнитное поле сильных неодимовых магнитов не оказывает сильного влияния и визуально это не заметно.

    12. Что такое N38 и чем такие магниты отличаются от N45?

    Латинские буквы в маркировке неодимового магнита означают температурный режим применения магнитов. N (normal) - до 80 С, M (Medium) - до 100С, H (High) - 120С, SH(Super High) - до 150С, UH (Ultra High) - до 180С, EH (Extra High) - 200 С...

    Цифры - это магнитная энергия в килоджоулях на кубический метр, что довольно трудно понять. Логически понятно одно - чем выше цифра, тем сильнее магнитное поле вокруг магнита. Т.е. один и тот же магнит может быть более или менее сильным.

    Ни буквенный ни цифровой индексы в "домашних" условиях без специальных приборов и оборудования проверить не представляется возможным.

    13. Как отличить настоящий неодимовый NdFeB магнит от китайской подделки?

    Дело в том, что неодимовые магниты - чисто китайский товар. 90% мировых запасов сырья + дешевая рабочая сила - сделали Китай мировым монополистом в производстве магнитов. 80% всех магнитов китайского производства. В странах СНГ, Европы -99%. Оригинальные кроссовки и поддельные производятся тоже в Китае. Выбирайте надежного поставщика.

    14. Если (например) сложить между собой два неодимовых магнита на 100 кг - магнитное поле увеличится вдвое?

    Да, увеличится, но не в 2 раза, а где то на 10-30%. Многое зависит от формы, покрытия и т.д. При совмещении все равно между магнитами будет образовываться зазор и магнитное поле будет в нем прерываться. Лучше приобрести цельный магнит на 200 кг.

    15. "Я могу вернуть магнит если он мне не подойдет?"

    У Вас есть возможность в течении 7-ми дней осуществить возврат / обмен магнита (магнитов) при полном сохранении товарного вида и свойств товара. За прокат/обмен магнитов мы берем плату в размере 10% от стоимости 1 единицы товара на сайте в день возврата. Т.е. допустим, Вы приобрели магнит за 200 грн и хотите его вернуть, мы возвращаем Вам - 90% (180 грн).

    16. На даних магнітах написано що режим роботи при температурі до 80 градусів - а що буде якщо робоче середовище приблизно 100 градусів вони тріснуть чи будуть слабше магнітити чи щось інше?

    При температурі більш ніж 80 градусів Цельсія неодимові магніти N38, N45 і т.д. втрачають магнітну силу на протязі деякого часу. Наприклад, у нас брали магніти 51х51х25 мм і занурювали у 100-140 градусний розчин (технологічний процес) - через 2-3 тижні єксплуатації магніти за своїми властивостями були схожі на звичайні феритові магніти, тобто кусок заліза з них можна було відірвати рукою.


    17. Чем клеить неодимовые магниты, чем приклеить неодимовый магнит, каким клеем приклеить неодимовый магнит?

    Так как магниты являються металлическими изделиями, то мы рекомендуем выбирать клей для металла. На клеях обычно указывают характеристики к которым лучше всего клеиться данный вид клея "металл-дерево", "металл-металл" и т.д. Из практики лучшими клеями являются акриловые супер клея, "жидкие гвозди", "супер липучка", двухкомпонентные эпоксидные клея".

    Один из самых важных разделов современной физики - это и все связанные с ними определения. Именно этим взаимодействием объясняются все электрические явления. Теория электричества охватывает многие другие разделы, включая и оптику, поскольку свет представляет собой электромагнитное излучение. В этой статье мы попытаемся объяснить суть электрического тока и силы магнитной на доступном, понятном языке.

    Магнитизм - основа основ

    В детстве взрослые показывали нам различные фокусы с использованием магнитов. Эти удивительные фигурки, которые притягиваются к друг другу и могут притягивать к себе мелкие игрушки, всегда радовали детский глаз. Что же такое магниты и каким образом магнитная сила действует на железные детали?

    Объясняя научным языком, придется обратиться к одному из основных законов физики. Согласно закону Кулона и специальной теории относительности, на заряд действует определенная сила, которая прямо пропорционально зависит от скорости самого заряда (v). Именно это взаимодействие и называется силой магнитной.

    Физические особенности

    Вообще следует понимать, что любые возникают только при движении зарядов внутри проводника или при наличии в них токов. При изучении магнитов и самого определения магнитизма следует понимать, что они тесно взаимосвязаны с явлением электрического тока. Поэтому давайте разберемся в сути электрического тока.

    Электрическая сила - это та сила, которая действует между электроном и протоном. Она численно намного больше значения гравитационной силы. Она порождается электрическим зарядом, а точнее, ее движением внутри проводника. Заряды же, в свою очередь, бывают двух видов: положительные и отрицательные. Как известно, положительно заряженные частицы притягиваются к отрицательно заряженным. Однако одинаковые по знаку заряды имеют свойство отталкиваться.

    Так вот, когда в проводнике начинают двигаться эти самые заряды, в нем возникает электрический ток, который объясняется как отношение количества заряда, протекающего через проводник в 1 секунду. Сила, действующая на проводник с током в магнитном поле, называется силой Ампера и находится по правилу "левой руки".

    Эмпирические данные

    Столкнуться с магнитным взаимодействием можно в повседневной жизни, когда имеешь дело с постоянными магнитами, катушками индуктивности, реле или электрическими моторами. У каждого из них присутствует магнитное поле, которое невидимо для глаз. Проследить за ним можно только по его действию, которое оно оказывает на движущиеся частицы и на намагниченные тела.

    Сила, действующая на проводник с током в магнитном поле, была изучена и описана французским физиком Ампером. В честь него названа не только эта сила, но еще и величина силы тока. В школе законы Ампера определяются как правила "левой" и "правой" руки.

    Характеристики магнитного поля

    Следует понимать, что магнитное поле всегда возникает не только вокруг источников электрического тока, но и вокруг магнитов. Его обычно изображают с помощью магнитных силовых линий. Графически это выглядит, как если бы на магнит положили лист бумаги, а сверху насыпали опилок железа. Они примут точно такой же вид, как на картинке снизу.

    Во многих популярных книгах по физике сила магнитная вводится как результат экспериментальных наблюдений. Она считается отдельной фундаментальной силой природы. Такое представление ошибочно, на самом деле существование магнитной силы следует из принципа относительности. Ее отсутствие привело бы к нарушению этого принципа.

    В магнитной силе нет ничего фундаментального - она представляет собой просто релятивисткое следствие закона Кулона.

    Применение магнитов

    Если верить легенде, в первом веке нашей эры на острове Магнесия древними греками были обнаружены необычные камни, которые обладали удивительными свойствами. Они притягивали к себе любые вещи, сделанные из железа или стали. Греки стали вывозить их с острова и изучать их свойства. А когда камни попали в руки уличных фокусников, то они стали незаменимыми помощниками во всех их выступлениях. Используя силы магнитных камешков, им удавалось создавать целое фантастическое шоу, которое привлекало множество зрителей.

    По мере того как камни распространялись по всем частям света, о них стали ходить легенды и различные мифы. Однажды камни оказались в Китае, где их назвали в честь острова, на котором они были найдены. Магниты стали предметом изучения всех великих ученых того времени. Было замечено, что если положить магнитный железняк на деревянный поплавок, зафиксировать, а затем повернуть его, то он попытается вернуться в исходное положение. Проще говоря, магнитная сила, действующая на него, будет поворачивать железняк определенным образом.

    Используя это ученые придумали компас. На круглую форму, изготовленную из дерева или пробки, были начерчены два основных полюса и установлена маленькая магнитная стрелка. Эту конструкцию опускали в небольшую посуду, наполненную водой. С течением времени модели компаса усовершенствовались и становились более точными. Ими пользуются не только мореплаватели, но и обычные туристы, которые любят изучать пустынные и горные местности.

    Ученый Ханс Эрстед практически всю свою жизнь посвятил электричеству и магнитам. Однажды во время лекции в университете он показал своим студентам следущий опыт. Через обычный медный проводник он пропустил ток, через некоторое время проводник нагрелся и начал гнуться. Это было явлением теплового свойства электрического тока. Студенты продолжили эти опыты, и один из них заметил, что электрический ток обладает еще одним интересным свойством. Когда в проводнике протекал ток, стрелка находящегося рядом компаса начинала понемногу отклоняться. Изучая это явление более подробно, ученый обнаружил так называемую силу, действующую на проводник в магнитном поле.

    Токи Ампера в магнитах

    Учеными были предприняты попытки найти магнитный заряд, однако изолированный магнитный полюс не удалось обнаружить. Объясняется это тем, что, в отличие от электрических, магнитных зарядов не существует. Ведь иначе можно было бы отделить единичный заряд, просто отломав один из концов магнита. Однако при этом на другом конце образуется новый противоположный полюс.

    В действительности любой магнит представляет собой соленоид, по поверхности которого циркулируют внутриатомные токи, они называются токами Ампера. Получается, что магнит можно рассматривать как металлический стержень, по которому циркулирует постоянный ток. Именно по этой причине введение в соленоид железного сердечника значительно увеличивает магнитное поле.

    Энергия магнита или ЭДС

    Как и любое физическое явление, магнитное поле обладает энергией, которую затрачивает на перемещение заряда. Существует понятие ЭДС (электродвижущая сила), она определяется как работа по перемещению единичного заряда из точки А 0 в точку А 1 .

    Описывается ЭДС законами Фарадея, которые применяются в трех различных физических ситуациях:

    1. Проводимый контур движется в создаваемом однородном магнитном поле. В этом случае говорят о магнитной ЭДС.
    2. Контур покоится, но движется сам источник магнитного поля. Это уже явление электрического ЭДС.
    3. И, наконец, контур и источник магнитного поля неподвижны, но меняется ток, который создает магнитное поле.

    Численно ЭДС по формуле Фарадея равно: ЭДС = W/q.

    Следовательно, электродвижущая сила не является силой в буквальном смысле, так как она измеряется в Джоулях на Кулон или в Вольтах. Получается, что она представляет собой энергию, которая сообщается электрону проводимости при обходе цепи. Каждый раз, совершая очередной обход вращающейся рамки генератора, электрон приобретает энергию, численно равную ЭДС. Эта дополнительная энергия может не только передаваться при столкновениях атомов внешней цепи, но и выделяться в виде Джоулева тепла.

    Сила Лоренца и магниты

    Сила, действующая на ток в магнитном поле, определяется по следующей формуле: q*|v|*|B|*sin a (произведение заряда магнитного поля, модули скорости этой же частицы, вектора индукции поля и синуса угла между их направлениями). Силу, которая действует на движущийся единичный заряд в магнитном поле, принято называть силой Лоренца. Интересен тот факт, что для этой силы недействителен 3-й закон Ньютона. Она подчиняется лишь именно поэтому все задачи по нахождению силы Лоренца следует решать, исходя из него. Давайте разберемся, как можно определить силу магнитного поля.

    Задачи и примеры решений

    Для нахождения силы, которая возникает вокруг проводника с током, необходимо знать несколько величин: заряд, его скорость и значение индукции возникающего магнитного поля. Следующая задача поможет понять, как вычислять силу Лоренца.

    Определить силу, действующую на протон, который движется со скоростью 10 мм/с в магнитном поле индукцией 0,2 Кл (угол между ними 90 о, так как заряженная частица движется перпендикулярно линиям индукции). Решение сводится к нахождению заряда. Заглянув в таблицу заядов, мы обнаружим, что протон обладает зарядом в 1,6*10 -19 Кл. Далее вычисляем силу по формуле: 1,6*10 -19 * 10 * 0,2 * 1 (синус прямого угла равен 1) = 3,2*10 -19 Ньютонов.

    Чтобы понять, как увеличить силу магнита, нужно разобраться в процессе намагничивания. Это произойдет, если магнит расположить во внешнем магнитном поле противоположной стороной к исходной. Увеличение же мощности электромагнита происходит тогда, когда увеличивается подача тока или умножаются витки обмотки.


    Увеличить силу магнита можно с помощью стандартного набора необходимого оборудования: клея, набора магнитов (нужны именно постоянные), источника тока и изолированного провода. Они понадобятся для осуществления тех способов увеличения силы магнита, которые представлены ниже.

    Усиление с помощью более мощного магнита

    Этот способ заключается в использовании более мощного магнита для усиления исходного. Для осуществления надо поместить один магнит во внешнее магнитное поле другого, обладающего большей мощностью. Также с этой же целью применяют электромагниты. После удержания магнита в поле другого, произойдет усиление, но специфика заключается в непредсказуемости результатов, поскольку для каждого элемента такая процедура будет работать индивидуально.



    Усиление с помощью добавления других магнитов

    Известно, что каждый магнит имеет два полюса, причем каждый притягивает противоположный знак других магнитов, а соответствующий – не притягивает, лишь отталкивает. Как увеличить мощность магнита, используя клей и дополнительные магниты. Здесь предполагается добавление других магнитов с целью увеличения итоговой мощности. Ведь, чем больше магнитов, тем, соответственно, будет больше сила. Единственное, что нужно учесть, - это присоединение магнитов одноименными полюсами. В процессе они будут отталкиваться, согласно законам физики. Но задача состоит в склеивании, несмотря на сложности в физическом плане. Лучше использовать клей, который предназначен для склеивания металлов.

    Метод усиления с использованием точки Кюри

    В науке есть понятие точки Кюри. Усиление или ослабление магнита можно произвести, нагревая или охлаждая его относительно самой этой точки. Так, нагревание выше точки Кюри или сильное охлаждение (гораздо ниже нее) приведет к размагничиванию.

    Надо заметить, что свойства магнита при нагревании и охлаждении относительно точки Кюри имеют скачкообразное свойство, то есть, добившись правильной температуры можно усилить его мощность.

    Метод №1

    Если возник вопрос, как сделать магнит сильнее, если его сила регулируется электрическим током, то сделать это можно с помощью увеличения тока, который подается на обмотку. Здесь идет пропорциональное увеличение мощности электромагнита и подачи тока. Главное, ⸺ постепенная подача, чтобы не допустить перегорания.

    Метод №2

    Для осуществления этого метода надо увеличить количество витков, но длина должна оставаться неизменной. То есть, можно сделать один-два дополнительных ряда провода, чтобы общее количество витков стало больше.

    В этом разделе рассмотрены способы, как увеличить силу магнита в домашних условиях, для экспериментов можно заказать на сайте МирМагнитов .

    Усиление обычного магнита

    Множество вопросов возникает, когда обычные магниты перестают выполнять свои прямые функции. Это часто происходит из-за того, что бытовые магниты таковыми не являются, ведь, по сути, они намагниченные металлические части, которые теряют свойства с течением времени. Усилить мощность таких деталей или вернуть им свойства, которые были изначально, невозможно.

    Надо заметить, что прикреплять к ним магниты, даже более мощные, не имеет смысла, поскольку, при их соединении обратными полюсами, внешнее поле становится гораздо слабее или вообще нейтрализуется.

    Это можно проверить с помощью обычной бытовой занавески-москитки, которая должна закрываться посередине при помощи магнитов. Если на слабые исходные магниты сверху прикрепить более мощные, то в результате штора вообще потеряет свойства соединения с помощью притяжения, потому что противоположные полюса нейтрализуют внешние поля друг друга на каждой из сторон.

    Эксперименты с неодимовыми магнитами

    Неомагнит довольно популярен, его состав: неодим, бор, железо. Такой магнит обладает высокой мощностью и отличается стойкостью к размагничиванию.

    Как усилить неодим? Неодим очень подвержен коррозии, то есть быстро ржавеет, поэтому неодимовые магниты покрывают никелем, чтобы повысить срок службы. Также они напоминают керамику, их легко разбить или расколоть.

    Но пытаться увеличивать его мощность искусственным способом нет смысла, потому что это постоянный магнит, он имеет определенный для себя уровень силы. Поэтому, если вам необходимо иметь более мощный неодим, лучше приобрести его, учитывая нужную силу нового.


    Заключение: в статье рассмотрена тема, как увеличить силу магнита, в том числе, как увеличить мощность неодимового магнита. Получается, что существует несколько способов увеличить свойства магнита. Потому что бывает просто намагниченный металл, увеличить силу которого невозможно.

    Наиболее простые способы: с помощью клея и других магнитиков (они должны быть приклеены идентичными полюсами), а также – более мощного, во внешнем поле которого должен находится исходный магнит.

    Рассмотрены способы увеличения силы электромагнита, которые заключаются в дополнительной обмотке проводами или усилении поступления тока. Единственное, что нужно учитывать - это силу поступления тока в целях безопасности и сохранности аппарата.

    Обычные и неодимовые магниты не способны поддаваться на увеличение собственной мощности.

    Ладонь левой руки расположите таким образом, чтобы линии магнитной индукции как бы входили в нее, а четыре вытянутых пальца, сложенных параллельно друг другу, обозначали направление движения положительного . В результате большой палец левой руки, отогнутый на угол в 90 , укажет направление силы Лоренца. Если правило буравчика применяется для отрицательных зарядов, то четыре вытянутых пальца расположите скорости движения заряженных .

    Индукцию магнитного поля, которая и является силовой характеристикой поля, образованного электрическим током, можно найти по приведенной формуле. Здесь rₒ - это радиус-вектор. Он указывает точку, в которой мы находим силу магнитного поля. Dl – длина участка, образующего магнитное поле, а I – соответственно, сила тока. В системе СИ µₒ - постоянная магнитная, равная произведения 4π на 10 в - .

    Модуль силы Лоренца определите как произведение следующих величин: модуля заряда носителя, скорости упорядоченного движения носителя по проводнику, модуля индукции магнитного поля, угла между векторами указанной скорости и магнитной индукции. Эта справедлива при всех значениях скорости заряженной .

    Запишите выражение и сделайте необходимые расчеты.

    Видео по теме

    Обратите внимание

    Если заряженная частица осуществляет движение в магнитном поле, характеризующемся однородностью, то при действии на нее силы Лоренца вектор скорости этой частицы будет лежать в плоскости, перпендикулярной вектору магнитной индукции. В результате заряженный объект станет двигаться по окружности. В таких случаях магнитная сила Лоренца становится центростремительной силой.

    Полезный совет

    Направление силы Лоренца перпендикулярно направлению векторов скорости и магнитной индукции. В момент движения в магнитном поле заряженной частицы эта сила никакой работы не совершает. Следовательно, модуль вектора скорости в это время сохраняется, а изменяется лишь направление этого вектора.

    Источники:

    • Магнитное взаимодействие токов

    Совет 2: Напряженность магнитного поля и его основные характеристики

    Магнитное поле - это одна из форм материи, объективной реальности. Оно невидимо для человеческого глаза, но его существование проявляется в виде магнитных сил, оказывающих воздействие на заряженные частицы и постоянные магниты.

    Графическое изображение магнитного поля

    Магнитное поле невидимо по своей природе. Для удобства был разработан способ его графического изображения в виде силовых линий. Их направление должно совпадать с направлением сил магнитного поля. Силовые линии не имеют начала и конца: они замкнуты. Это отражает одно из уравнений Максвелла в теории электромагнитного взаимодействия. Ученым сообществом принято, что силовые линии «начинаются» на северном полюсе магнита и «заканчиваются» на южном. Это дополнение было сделано исключительно для условного задания направления вектора силы магнитного поля.

    В замкнутости силовых линий магнитного поля можно убедиться при помощи простого опыта. Нужно постоянный магнит и область вокруг него железными опилками. Они будут располагаться таким образом, что вы сможете увидеть сами силовые линии.

    Напряженность магнитного поля

    Вектор напряженности магнитного поля и есть тот самый вектор, описанный в предыдущем разделе. Именно его направление должно совпадать с направлением силовых линий. Это сила, с которой поле действует на постоянный магнит, помещенный в него. Напряженность характеризует взаимодействие магнитного поля с окружающим веществом. Существует специальная , с помощью которой можно определить модуль ее вектора в любой точке пространства (закон Био-Савара-Лапласа). Напряженность не зависит от магнитных свойств среды и измеряется в эрстедах (в системе СГС) и в А/м (СИ).

    Индукция магнитного поля и магнитный поток

    Индукция магнитного поля характеризует его интенсивность, т.е. способность производить работу. Чем выше эта способность, тем сильнее поле и выше концентрация силовых линий в 1 м2. Магнитный поток есть произведение индукции на площадь, на которую воздействует поле. Численно эту величину принято приравнивать к количеству силовых линий, пронизывающих определенную площадь. Поток максимален, если площадка расположена перпендикулярно к направлению вектора напряженности. Чем меньше этот угол, тем слабее воздействие.

    Магнитная проницаемость

    Действие магнитного поля в определенной среде зависит от ее магнитной проницаемости. Эта величина характеризует величину индукции в среде. Воздух и некоторые вещества имеют магнитную проницаемость вакуума (значение берется из таблицы физических постоянных). В ферромагнетиках она в тысячи раз больше.