Войти
В помощь школьнику
  • Придаточные образа действия и степени Сложноподчиненное предложение с придаточным степени
  • Описание работы реактора
  • Подготовка соборного уложения
  • Пахнет жареным А всё, что не по графику, – на фиг
  • Прилагательные характеризующие человека с хорошей стороны — самый полный список Современные прилагательные список
  • Чародольский князь (Ведьмин крест) Чародол 2 чародольский князь читать
  • Химия и энергетика. Роль химии в решении энергетических проблем. Просто о сложном – Химическая энергия

    Химия и энергетика. Роль химии в решении энергетических проблем. Просто о сложном – Химическая энергия

    Химическая промышленность характеризуется тесными связями со всеми отраслями народного хозяйства благодаря широкому ассортименту производимой ею продукции. Эта область производства отличается высокой материалоемкостью. Материальные и энергетические затраты в производстве продукции могут составлять от 2/3 до 4/5 себестоимости конечного продукта.

    Развитие химической технологии идет по пути комплексного использования сырья и энергии, применения непрерывных и безотходных процессов с учетом экологической безопасности окружающей среды, применения высоких давлений и температур, достижений автоматизации и кибернетизации.

    Особенно много энергии потребляет химическая промышленность. Энергия тратится на осуществление эндотермических процессов, на транспортировку материалов, крошение и измельчение твердых веществ, фильтрование, сжатие газов и т.п. Значительных затрат энергии нуждаются в производстве карбида кальция, фосфора, аммиака, полиэтилена, изопрена, стирола и т.п. Химические производства вместе с нефтехимическими являются энергоёмкими областями индустрии. Выпуская почти 7% промышленной продукции, они потребляют в пределах 13-20% энергии, которая используется всей промышленностью.

    Источниками энергии чаще всего являются традиционные невосстановимые природные ресурсы - уголь, нефть, природный газ, торф, сланцы. В последнее время они очень быстро истощаются. Особенно ускоренными темпами уменьшаются запасы нефти и природного газа, а они ограничены и непоправимые. Неудивительно, что это порождает энергетическую проблему.

    В течение 80 лет одни основные источники энергии сменялись другими: дерево заменили на уголь, уголь - на нефть, нефть - на газ, углеводородное топливо - на ядерное. К началу 80-х годов в мире около 70% потребности в энергии удволетворялось за счёт нефти и природного газа, 25% - каменного и бурого угля и лишь около 5% - других источников энергии.



    В разных странах энергетическую проблему решают по-разному, тем не менее, всюду в её решение значительный вклад делает химия. Так, химики считают, что и в будущем (приблизительно еще лет 25-30) нефть сохранит свою позицию лидера. Но ее взнос в энергоресурсы заметно сократится и будет компенсироваться выросшим использованием угля, газа, водородной энергетики ядерного горючего, энергии Солнца, энергии земных глубин и других видов восстановительной энергии, включая биоэнергетику.

    Уже сегодня химики беспокоятся о максимальном и комплексном энерготехнологическом использовании топливных ресурсов - уменьшением потерь теплоты в окружающую среду, вторичным использованием теплоты, максимальным применением местных топливных ресурсов и т.п.

    Источники основной электрической энергии

    Тепловые электростанции

    Работают на органическом топливе – мазут, уголь, торф, газ, сланцы. Размещаются ТЭС, главным образом, в том регионе, где присутствуют природные ресурсы и вблизи крупных нефтеперерабатывающих предприятий.

    Гидроэлектростанции

    Возводятся в местах, где большие реки перекрываются плотиной, и благодаря энергии падающей воды вращаются турбины электрогенератора. Получение электроэнергии таким методом считается самым экологичным за счет того, что не происходит сжигание различных видов топлива, следовательно, отсутствуют вредные отходы.

    Гидроэлектростанция

    Атомные электростанции

    Для нагрева воды требуется энергия тепла, которая выделяется в результате ядерной реакции. А в остальном она схожа с тепловой электростанцией.

    Атомная электростанция

    Нетрадиционные источники энергии

    К ним относятся ветер, солнце, тепло земных турбин и океанические приливы. В последнее время их все чаще используют как нетрадиционные дополнительные источники энергии. Ученые утверждают, что к 2050 году нетрадиционные энергоисточники станут основными, а обычные потеряют свое значение.

    Энергия солнца

    Есть несколько способов ее применения. Во время физического метода получения энергии солнца применяются гальванические батареи, способные поглощать и преобразовывать солнечную энергию в электрическую или тепловую. Также используется система зеркал, отражающая солнечные лучи и направляющая их в трубы, заполненные маслом, где концентрируется солнечное тепло.

    В некоторых регионах целесообразнее использовать солнечные коллекторы, с помощью которых есть возможность в частичном решении экологической проблемы и использования энергии для бытовых нужд.

    Основные достоинства энергии солнца – общедоступность и неисчерпаемость источников, полная безопасность для окружающей среды, основные экологически чистые источники энергии.

    Главный недостаток – потребность в больших площадях земли для строительства солнечной электростанции.

    Солнечная электростанция

    Энергия ветра

    Ветряные электростанции способны производить электрическую энергию только в том случае, когда дует сильный ветер. «Основные современные источники энергии» ветра – ветряк, представляющий собой достаточно сложную конструкцию. В нем запрограммированы два режима работы – слабый и сильный ветер, а также есть остановка двигателя, если очень сильный ветер.

    Основной недостаток ветряных электростанций (ВЭС) - шум, получаемый во время вращения лопастей пропеллеров. Самыми целесообразными являются небольшие ветряки, предназначенные для обеспечения экологически безопасной и недорогой электроэнергией дачных участок или отдельных ферм.

    Ветряная электростанция

    Приливные электростанции

    Для производства электрической энергии используется энергия прилива. Для того, чтобы построить простейшую приливную электростанцию потребуется бассейн, перекрытое плотиной устье реки или залив. Плотина оснащена гидротурбинами и водопропускными отверстиями.

    Вода во время прилива поступает в бассейн и когда происходит сравнение уровней воды в бассейне и в море, водопропускные отверстия закрываются. С приближением отлива водный уровень уменьшается, напор становится достаточной силы, турбины и электрогенераторы начинают свою работу, постепенно вода из бассейна уходит.

    Новые источники энергии в виде приливных электростанций имеют некоторые минусы – нарушение нормального обмена пресной и соленой воды; влияние на климат, так в результате их работы меняется энергетический потенциал вод, скорость и площадь перемещения.

    Плюсы – экологичность, невысокая себестоимость производимой энергии, сокращение уровня добычи, сжигания и транспортировки органического топлива.

    Нетрадиционные геотермальные источники энергии

    Для производства энергии используется тепло земных турбин (глубинные горячие источники). Данное тепло можно применять в любом регионе, но расходы смогут окупиться лишь там, где горячие воды максимально приближены к земной коре – местности активной деятельности гейзеров и вулканов.

    Основные источники энергии представлены двумя типами – подземный бассейн естественного теплоносителя (гидротермальный, паротермальный или пароводяной источники) и тепло горных горячих пород.

    Первый тип представляет собой готовые к применению подземные котлы, из которых пар или воду добывать можно обычными буровыми скважинами. Второй тип дает возможность получения пара или перегретой воды, которые в дальнейшем можно использовать в энергетических целях.

    Основной недостаток обоих типов – слабая концентрация геотермических аномалий, когда горячие породы или источники подходят близко к поверхности. Также требуется обратная закачка в подземный горизонт отработанной воды, поскольку термальная вода имеет множество солей токсичных металлов и химических соединений, которые нельзя сбрасывать в поверхностные водные системы.

    Достоинства – данные запасы неисчерпаемы. Геотермальная энергия пользуется большой популярностью благодаря активной деятельности вулканов и гейзеров, территория которых занимает 1/10 площади Земли.

    Геотермальная электростанция

    Новые перспективные источники энергии – биомасса

    Биомасса бывает первичной и вторичной. Для получения энергии можно использовать высушенные водоросли, отходы сельского хозяйства, древесину и т. д. Биологический вариант использования энергии – получение из навоза биогаза в результате сбраживания без доступа воздуха.

    На сегодняшний день в мире накопилось приличное количество мусора, ухудшающего окружающую среду, мусор оказывает губительное влияние на людей, животных и на все живое. Именно поэтому требуется развитие энергетики, где будет использоваться вторичная биомасса для предотвращения загрязнения окружающей среды.

    Согласно подсчетам ученых, населенные пункты могут полностью обеспечивать себя электроэнергией только за счет своего мусора. Более того, отходы практически отсутствуют. Следовательно, будет решаться проблема уничтожения мусора одновременно с обеспечением населения электроэнергией при минимальных расходах.

    Преимущества – не повышается концентрация углекислого газа, решается проблема использования мусора, следовательно, улучшается экология.

    Вся история развития цивилизации - поиск источников энергии. Это весьма актуально и сегодня. Ведь энергия - это возможность дальнейшего развития индустрии, получение устойчивых урожаев, благоустройство городов и оказание помощи природе в залечивании ран, нанесённых ей цивилизацией. Поэтому решение энергетической проблемы требует глобальных усилий. Свой немалый вклад делает химия как связующее звено между современным естествознанием и современной техникой.

    Обеспеченность энергией является важнейшим условием социально-экономического развития любой страны, ее промышленности, транспорта, сельского хозяйства, сфер культуры и быта.

    Но в ближайшие десятилетие энергетики ещё не сбросят со счетов ни дерево, ни уголь, ни нефть, ни газ. И в то же время они должны усиленно разрабатывать новые способы производства энергии.

    Химическая промышленность характеризуется тесными связями со всеми отраслями народного хозяйства благодаря широкому ассортименту производимой ею продукции. Эта область производства отличается высокой материалоемкостью. Материальные и энергетические затраты в производстве продукции могут составлять от 2/3 до 4/5 себестоимости конечного продукта.

    Развитие химической технологии идет по пути комплексного использования сырья и энергии, применения непрерывных и безотходных процессов с учетом экологической безопасности окружающей среды, применения высоких давлений и температур, достижений автоматизации и кибернетизации.

    Особенно много энергии потребляет химическая промышленность. Энергия тратится на осуществление эндотермических процессов, на транспортировку материалов, крошение и измельчение твердых веществ, фильтрование, сжатие газов и т.п.. Значительных затрат энергии нуждаются в производстве карбида кальция, фосфора, аммиака, полиэтилена, изопрена, стирола и т.п.. Химические производства вместе с нефтехимическими являются энергоёмкими областями индустрии. Выпуская почти 7 % промышленной продукции, они потребляют в пределах 13-20% энергии, которая используется всей промышленностью.

    Источниками энергии чаще всего являются традиционные невосстановимые природные ресурсы - уголь, нефть, природный газ, торф, сланцы. В последнее время они очень быстро истощаются. Особенно ускоренными темпами уменьшаются запасы нефти и природного газа, а они ограничены и непоправимые. Неудивительно, что это порождает энергетическую проблему.

    В течение 80 лет одни основные источники энергии сменялись другими: дерево заменили на уголь, уголь - на нефть, нефть - на газ, углеводородное топливо - на ядерное. К началу 80-х годов в мире около 70% потребности в энергии удовлетворялось за счёт нефти и природного газа, 25% - каменного и бурого угля и лишь около 5% - других источников энергии.

    В разных странах энергетическую проблему решают по-разному, тем не менее, всюду в её решение значительный вклад делает химия. Так, химики считают, что и в будущем (приблизительно еще лет 25-30) нефть сохранит свою позицию лидера. Но ее взнос в энергоресурсы заметно сократится и будет компенсироваться выросшим использованием угля, газа, водородной энергетики ядерного горючего, энергии Солнца, энергии земных глубин и других видов восстановительной энергии, включая биоэнергетику.

    Уже сегодня химики беспокоятся о максимальном и комплексном энерготехнологическом использовании топливных ресурсов - уменьшением потерь теплоты в окружающую среду, вторичным использованием теплоты, максимальным применением местных топливных ресурсов и т.п..

    Поскольку среди видов горючего наиболее дефицитным является жидкое, во многих странах выделены крупные средства для создания рентабельной технологии переработки угля в жидкое (а также газообразное) топливо. В этой области сотрудничают учёные России и Германии. Суть современного процесса переработки угля в синтез-газ заключается в следующем. В плазменный генератор подаётся смесь водяного пара и кислорода, которая разогревается до 3000оС. А затем в раскалённый газовый факел поступает угольная пыль, и в результате химической реакции образуется смесь оксида углерода (II) и водорода, т.е. синтез-газ. Из него получают метанол: CO+2H2СH3OH. Метанол может заменить бензин в двигателях внутреннего сгорания. В плане решения экологической проблемы он выгодно отличается от нефти, газа, угля, но, к сожалению, теплота его скорания в 2 раза ниже, чем у бензина, и, кроме того, он агрессивен по отношению к некоторым металлам, пластическим массам.

    Разработаны химические методы изъятия вяжущей нефти (содержит высокомолекулярные углеводороды), значительная часть которой остается в подземных амбарах. Для увеличения выхода нефти в воду, которую закачивают в пласты, прибавляют поверхностно-активные вещества, их молекулы размещаются на границе нефть-вода, которая увеличивает подвижность нефти.

    Будущее пополнение топливных ресурсов объединяют с рациональной переработкой угля. Например, измельченный уголь смешивается с нефтью, на добытую пасту действуют водородом под давлением. При этом образовывается смесь углеводородов. На добывание 1 т искусственного бензина тратится около 1 т угля и 1500 м водорода. Пока что искусственный бензин дороже добытого из нефти, тем не менее, важна принципиальная возможность его добывания.

    Очень перспективной видится водородная энергетика, которая основывается на сжигании водорода, во время которого вредные выбросы не возникают. Тем не менее, для ее развития нужно решить ряд задач, связанных со снижением себестоимости водорода, созданием надежных средств его хранения и транспортировки и т.п.. Если эти задачи будут разрешимы, водород будет широко использоваться в авиации, водном и наземном транспорте, промышленном и сельскохозяйственном производствах.

    Неисчерпаемые возможности содержит ядерная энергетика, ее развитие для производства электроэнергии и теплоты дает возможность высвободить значительное количество органического топлива. Здесь перед химиками стоит задача создать комплексные технологические системы покрытия энергетических затрат, которые происходят во время осуществления эндотермических реакций, с помощью ядерной энергии. Сейчас ядерная энергетика развивается по пути широкого внедрения реакторов на быстрых нейтронах. В таких реакторах используется уран, обогащённый изотопом 235U (не менее чем на 20%), а замедлителя нейтронов не требуется.

    В настоящее время ядерная энергетика и реакторостроение - это мощная индустрия с большим объёмом капиталовложений. Для многих стран она важная статья экспорта. Для реакторов и вспомогательного оборудования требуются особые материалы, в том числе высокой частоты. Задача химиков, металлургов и других специалистов - создание таких материалов. Над обогащением урана тоже работают химики и представители других смежных профессий.

    Сейчас перед атомной энергетикой стоит задача вытеснить органическое топливо не только из сферы производства электроэнергии, но так же из теплоснабжения и в какой-то мере из металлургической и химической промышленности путём создания реакторов энерготехнологического значения.

    АЭС в перспективе найдут ещё одно применение - для производства водорода. Часть полученного водорода будут потребляться химической промышленностью, другая часть послужит для питания газотурбинных установок, включаемых при пиковых нагрузках.

    Большие надежды возлагаются на использование солнечной радиации (гелиоэнергетика). В Крыму действуют солнечные батареи, фотогальванические элементы которых превращают солнечный свет в электричество. Для опреснения воды и отопления жилья широко используются солнечные термоустановки, которые превращают солнечную энергию в теплоту. Солнечные батареи уже давно применяются в навигационных сооружениях и на космических кораблях. В отличие от ядерной, стоимость энергии, которую добывают с помощью солнечных батарей, постоянно снижается.

    Для изготовления солнечных батарей главным полупроводниковым материалом является силиций и соединения силиция. Ныне химики работают над разработкой новых материалов-преобразователей энергии. Это могут быть разные системы солей как накопители энергии. Дальнейшие успехи гелиоэнергетики зависят от тех материалов, которые предложат химики для преобразования энергии.

    В новом тысячелетии прирост производства электроэнергии будет происходить за счет развития солнечной энергетики, а также метанового брожения бытовых отходов и других нетрадиционных источников добывания энергии.

    Наряду с гигантскими электростанциями существуют и автономные химические источники тока, преобразующие энергию химических реакций непосредственно в электрическую. В решении этого вопроса химии принадлежит главная роль. В 1780 г. итальянский врач Л. Гальвани, наблюдая сокращение отрезанной лапки лягушки после прикосновения к ней проволочками из разных металлов, решил, что в мышцах имеется электричество, и назвал его " животным электричеством". А. Вольта, продолжая опыт своего соотечественника, предположил, что источником электричества является не тело животного: электрический ток возникает от соприкосновения разных металлических проволочек. "Предком" современных гальванических элементов можно считать "электрический столб", созданный А. Вольтой в 1800 г. Это изобретение похоже на слоёный пирог из нескольких пар металлических пластин: одна пластина из цинка, вторая - из меди, уложенные друг на друга, а между ними помещена войлочная прокладка, пропитанная разбавленной серной кислотой. До изобретения в Германии В. Сименсом в 1867г. динамо-машины гальванические элементы были единственным источником электрического тока. В наши дни, когда автономные источники энергии понадобились авиации, подводному флоту, ракетной технике, электронике, внимание учёных снова обращено к ним.

    В ядерных энергетических установках подводных лодок США используются многие химические элементы и синтетические органические соединения. Среди них - ядерное горючее в виде обогащенного делящимся изотопом урана; графит, тяжелая вода или бериллий, используемые как отражатели нейтронов для уменьшения их утечки из активной зоны реактора; бор, кадмий и гафний, входящие в состав стержней управления и защиты; свинец, применяемый в первичной защите реактора наряду с бетоном; цирконий в сплаве с оловом, служащий конструкционным материалом для оболочек тепловыделяющих элементов; катионитные и анионитные смолы, используемые для загрузки ионообменных фильтров, в которых первичный теплоноситель установки - вода высокой степени очистки освобождается от растворенных и взвешенных в ней частиц.

    Важная роль отводится химии и в обеспечении работы различных систем подводных лодок, например системы гидравлики, имеющей прямое отношение к управлению энергетической установкой. Американские химики долго работали над созданием рабочих жидкостей для этой системы, способных действовать при высоком давлении (до 210 атмосфер), безопасных в пожарном отношении и неядовитых. Сообщалось, что для предохранения трубопроводов и арматуры системы гидравлики от коррозии при обводнении забортной водой в рабочую жидкость добавляется хромат натрия.

    Разнообразные синтетические материалы - пенопласта, синтетический каучук, поливинилхлорид и другие широко используются на лодках для уменьшения шума механизмов и повышения их взрывостойкость Из таких материалов изготовляются звукоизолирующие покрытия и кожухи, амортизаторы, звукоизолирующие вставки в трубопроводы, звукозаглушающие подвески.

    Химические аккумуляторы энергии, например в виде так называемых пороховых аккумуляторов давления, начинают применяться (правда, пока еще в экспериментальном порядке) для аварийного продувания цистерн главного балласта. Твердотопливные заряды используются на ракетных подводных лодках США и для обеспечения подводного старта ракет «Поларис». При сгорании подобного заряда в присутствии пресной воды в специальном генераторе образуется парогазовая смесь, которая выталкивает ракету из пусковой трубы.

    Чисто химические источники энергии используются на некоторых типах состоящих на вооружении и разрабатываемых за рубежом торпед. Так, двигатель американской быстроходной парогазовой торпеды Мк16 работает на спирте, воде и перекиси водорода. Находящаяся в разработке торпеда Мк48, как сообщалось в печати, имеет газовую турбину, работа которой обеспечивается твердотопливным зарядом. Некоторые экспериментальные реактивные торпеды снабжены силовыми установками, работающими на реагирующем с водой топливе.

    В последние годы нередко говорилось о новом типе «единого двигателя» для подводных лодок, основанного на новейших достижениях химии, в частности на использовании как источника энергии так называемых топливных элементов. Подробно о них говорится далее, в специальной главе этой книги. Пока лишь укажем, что в каждом из таких элементов протекает электрохимическая реакция, обратная электролизу. Так, при электролизе воды на электродах выделяются кислород и водород. В топливном же элементе к катоду подводится кислород, а к аноду - водород, и ток, снимаемый с электродов, идет во внешнюю для элемента сеть, где его можно использовать для привода гребных электродвигателей подводной лодки. Другими словами, в топливном элементе химическая энергия непосредственно преобразуется в электрическую без промежуточного получения высоких температур, как в обычной цепочке электростанции: котел - турбина - электрогенератор.

    Материалом для электродов в топливных элементах могут служить никель, серебро и платина. В качестве топлива возможно применение жидкого аммиака, нефти, жидкого водорода, метилового спирта. В качестве окислителя обычно используется жидкий кислород. Электролитом может быть раствор едкого калия. В одном западногерманском проекте топливных элементов для подводной лодки предлагается использовать перекись водорода высокой концентрации, при разложении которой получаются одновременно и топливо (водород) и окислитель (кислород).

    Энергетическая установка с топливными элементами в случае ее применения на лодках позволила бы отказаться от дизель-генераторов и аккумуляторных батарей. Она обеспечила бы также бесшумную работу главных двигателей, отсутствие вибрации и высокий коэффициент полезного действия - около 60–80 процентов при перспективном удельном весе установки до 35 килограммов на киловатт. По расчетам иностранных специалистов, расходы па постройку подводной лодки с топливными элементами могут быть вдвое-втрое ниже затрат на строительство атомной подводной лодки.

    Печать сообщала, что в США велись работы по созданию наземного прототипа лодочной энергетической установки с топливными элементами. В 1964 году начались испытания такой установки на сверхмалой исследовательской подводной лодке «Стар-1», мощность гребного двигателя ее всего лишь 0,75 киловатт. По данным журнала «Шиф унд Хафен», опытная установка с топливными элементами создана также в Швеции.

    Большинство зарубежных специалистов склоняется к тому, что мощность энергетических установок этого рода не превзойдет 100 киловатт, а время их непрерывной работы 1000 часов. Наиболее рациональным поэтому считается применять топливные элементы прежде всего на сверхмалых и малых подводных лодках исследовательского или диверсионно-разведывательного назначения с автономностью около одного месяца.

    Создание топливных элементов не исчерпывает всех случаев применения достижений электрохимии в подводном деле. Так, на атомных подводных лодках США применяются щелочные никель-кадмиевые аккумуляторы, при зарядке которых выделяется не водород, а кислород. На некоторых дизельных подводных лодках этой страны вместо кислотных аккумуляторных батарей применяют щелочные серебряно-цинковые аккумуляторные батареи, обладающие втрое большей удельной энергией.

    Еще более высоки характеристики серебряно-цинковых аккумуляторов одноразового действия для электроторпед подводных лодок. В сухом состоянии (без электролита) они могут храниться годами, не требуя никакого ухода. А приведение их в готовность занимает буквально доли секунды, причем аккумуляторы могут содержаться в снаряженном виде 24 часа. Габариты и вес подобных батарей в пять раз меньше, чем эквивалентных им свинцовых (кислотных). Некоторые типы торпед, которые состоят на вооружении американских подводных лодок, имеют батареи с пластинами из магния и-хлорида серебра, работающие на морской воде и также обладающие повышенными характеристиками.

    Энергетика химической промышленности занимает одно из основных мест в современной индустрии. Без ее участия было бы невозможно провести технологические процессы. Энергетика в большой мере служит для обеспечения жизнедеятельности человека.

    Существуют различные типы энергии:

    • электрическая;

    • тепловая;

    • ядерная и термоядерная;

    • световая;

    • магнитная;

    • химическая;

    • механическая.

    Абсолютно все химические производства потребляют энергию. Процессы отрасли связаны либо с использованием, либо с взаимным обращением энергии. Электрическая энергия используется для электрохимических, электротермических и электромагнитных процессов. Это электролиз, плавление, нагревание, синтез. Для процессов измельчения, смешивания, работы компрессоров и вентиляторов используется превращение электрической энергии в механическую.

    Для протекания физических процессов, которые не сопровождаются нагреванием, плавлением, дистилляцией, сушкой, то есть химическими реакциями, используется тепловая энергия. Химическая энергия используется в гальванических приборах, где превращается в электрическую. Световая энергия применяется для осуществления фотохимических реакций.

    Топливная база энергетики для химпромышленности

    В энергетике химической промышленности горючие ископаемые и их производные представляют собой основной источник потребляемой энергии. Энергоемкость производства определяется расходом энергию на единицу изготавливаемой продукции.
    Энергетика включает в себя добычу энергоресурсов (нефти, газа, угля, сланца) и их переработку, а также специальные виды транспорта. К ним относятся нефтепроводы, газопроводы, линии электропередачи и продуктопроводы.

    Топливная область энергетики является и сырьевой базой для нефтехимической и химической промышленности. Вся ее продукция подвергается термической обработке для выделения отдельных компонентов (например, кокс из угля, этан, этилен, бутан, пропан из нефти и газов). Только природный газ используется в чистом виде для производства химических продуктов, таких как аммиак, метиловый спирт.

    Энергетика развивается динамично и быстро, провоцируя развитие научно-технического прогресса. На использование энергетических ресурсов спрос растет все больше, в связи с этим поиск месторождений и создание новых производств – приоритетные составляющие индустрии. Однако эта область приводит к многочисленным проблемам в экономике, политике, географии, экологии, которые имеют глобальный характер.

    Наиболее развивающиеся сегменты энергетики – нефтяная и нефтеперерабатывающая, а также газовая отрасли. Добыча природных ископаемых занимает весомое место в мире, а их месторождения иногда порождают конфликты между государствами. Нефть является важным энергоносителем, после ее переработки получают массу нужных для деятельности человека продуктов. В их списке керосин, бензин, различные виды топлива и нефтяных масел, мазут, гудрон и прочие. Потребность в нефтеперерабатывающей отрасли возникла с развитием транспорта и авиации для его обеспечения топливом. Газовая промышленность является самой прогрессирующей и перспективной областью. Природный газ – основное сырье для химических производств и его использование очень различно.

    Выставка «Химия» осенью в большом объеме и масштабе представит новейшие технологии и разработки в области энергетики химической промышленности . На данной выставке производители и потребители могут не только ознакомиться с товаром и ассортиментом, а также заключить новые сделки, наладить связи как с отечественными, так и с зарубежными партнерами. Как отмечают специалисты, «Химия» оказывает огромное влияние на развитие и продвижение новых технологий. Кроме того, на ней освещаются не только новые методы и достижения в науке и технике, а и средства индивидуальной и коллективной защиты на производстве.

    Выставка, организуемая ЦВК «Экспоцентр», проходит в Москве с 1965 года. А специалисты «Экспоцентра» позволяют провести подобные мероприятия на самом высоком уровне. Поэтому его и выбирают неоднократно в качестве проведения подобных мероприятий как отечественные, так и зарубежные организаторы.