Войти
В помощь школьнику
  • Защита Лондона от наводнений
  • Реферат: Образование в странах Африки южнее Сахары в XXI веке: проблемы и перспективы развития
  • Большой морской танкер "иван бубнов"
  • Северорусские княжества в xii – начале xiii века Особенности политического управления
  • Диалог "Покупка одежды" (Shopping for Clothes) Диалог покупки на английском языке с переводом
  • Инфракрасное излучение и его влияние на человека
  • Как из fe2o3 получить fe. Получение окиси железа Fe2O3. Железо: физические и химические свойства

    Как из fe2o3 получить fe. Получение окиси железа Fe2O3. Железо: физические и химические свойства

    В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.

    Физические свойства

    В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.


    Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».


    При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).


    Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.


    Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.


    Способы получения железа

    1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:




    Восстановление происходит постепенно, в 3 стадии:


    1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2


    2) Fe 3 O 4 + СО = 3FeO +СO 2


    3) FeO + СО = Fe + СO 2


    Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.


    2. Очень чистое железо получают одним из способов:


    а) разложение пентакарбонила Fe


    Fe(CO) 5 = Fe + 5СО


    б) восстановление водородом чистого FeO


    FeO + Н 2 = Fe + Н 2 O


    в) электролиз водных растворов солей Fe +2


    FeC 2 O 4 = Fe + 2СO 2

    оксалат железа (II)

    Химические свойства

    Fe - металл средней активности, проявляет общие свойства, характерные для металлов.


    Уникальной особенностью является способность к «ржавлению» во влажном воздухе:



    В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:


    3Fe + 2O 2 = Fe 3 O 4


    В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:


    3 Fe + 4Н 2 O(г) = 4H 2


    Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.

    Виды коррозии


    Защита железа от коррозии


    1. Взаимодействие с галогенами и серой при высокой температуре.

    2Fe + 3Cl 2 = 2FeCl 3


    2Fe + 3F 2 = 2FeF 3



    Fe + I 2 = FeI 2



    Образуются соединения, в которых преобладает ионный тип связи.

    2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).

    Fe + Р = Fe x P y


    Fe + C = Fe x C y


    Fe + Si = Fe x Si y


    Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)

    3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)

    Fe 0 + 2Н + → Fe 2+ + Н 2


    Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.


    Fe + 2HCl = FeCl 2 + Н 2


    Fe + H 2 SO 4 = FeSO 4 + Н 2

    4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)

    Fe 0 - 3e - → Fe 3+


    Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).


    В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:


    Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O


    Очень хорошо растворяется в смеси НСl и HNO 3

    5. Отношение к щелочам

    В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.

    6. Взаимодействие с солями менее активных металлов

    Fe + CuSO 4 = FeSO 4 + Cu


    Fe 0 + Cu 2+ = Fe 2+ + Cu 0

    7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)

    Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа

    Соединения Fe(III)

    Fe 2 O 3 - оксид железа (III).

    Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».

    Способы получения:

    1) разложение гидроксида железа (III)


    2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O


    2) обжиг пирита


    4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3


    3) разложение нитрата


    Химические свойства

    Fe 2 O 3 - основный оксид с признаками амфотерности.


    I. Основные свойства проявляются в способности реагировать с кислотами:


    Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О


    Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O


    Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O


    II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:


    Fe 2 О 3 + СаО = Ca(FeО 2) 2


    Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O


    Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2


    III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:


    Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2

    Fe(OH) 3 - гидроксид железа (III)

    Способы получения:

    Получают при действии щелочей на растворимые соли Fe 3+ :


    FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl


    В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.


    Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:


    4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3


    4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3


    Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .

    Химические свойства

    Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:


    1) реакции с кислотами протекают легко:



    2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:


    Fe(OH) 3 + 3КОН = K 3


    В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):


    2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O

    Соли Fe 3+

    Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)


    б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)

    Получения ж. из руд был изобретен в зап. части Азии во 2-м тысячелетии до н. э.; вслед за тем применение ж. распростран. в Вавилоне, Египте, Греции; на смену бронз , в. пришел железный в. По содержанию в литосфере (4,65 мае. %) ж. занимает 2-е место среди металлов (на 1-м алюминий) и образует ок. 300 минералов (оксиды, сульфиды , силикаты , карбонаты и т.д.).
    Ж. может существовать в виде трех аллот-ропич. модификаций: a-Fe с ОЦК, y-Fe с ГЦК и 8-Fe с ОЦК кристаллич . решетками; a-Fe ферромагнитно вплоть до 769 "С (точка Кюри). Модификации y~Fe и б-Fe парамагнитны. Полиморфные превращения ж. и стали при нагревании и охлаждении открыл в 1868 г. Д. К. Чернов. Fe проявляет перем. валентность (наиб, устойчивы соединения 2- и 3-валентного ж.). С кислородом ж. образует оксиды FeO, Fe2O3 и Fe3O4. Плотность ж. (при содержании примесей < 0,01 мае %) 7,874 г/ /см3, /т=1539"С, /КИЛ*3200«С.
    Ж. - важнейший металл соврем, техники. В чистом виде из-за низкой прочн. практич. не использ. Осн. масса ж. применяется в виде весьма разных по составу и св-вам сплавов. На долю сплавов ж. приходится ~ 95 % всей ме-таллич. продукции.
    Чистое Fe получают в относит, небольших кол-вах электролизом водных р-ров его солей или восстановлением водородом. Достат. чистое ж. получают прямым восстановл. не-посредст. из рудных концентратов (минуя домен , печь), водородом, природ, газом или углем при относит, низких темп-pax (губчатое Fe, железный порошок, металлизов. окатыши):

    Губчатое железо - пористая масса с высоким содержанием железа, получ. восстановлением оксидов при / < /пл. Сырье - ж. руда, окатыши, железорудный концентрат и прокатная окалина , а восстановитель -углерод (некоксующийся уголь , антрацит , торф, сажа), газы (водород, конверторов., природ, и др. горючие газы) или их сочетание. Г. ж. для выплавки качеств, стали в электропечах, должно иметь степень металлизации рем/реобш ^ 85 % (желат. 92-95 %) и пустой породы < 4-5 %. Содержание углерода зависит от способа произ-ва г. ж. В процессах FIOR, SL-RN и HIB получают г. ж. с 0,2-0,7 % С, в процессе Midrex 0,8-2,5 % С. При газ. восстановлении содерж. 0,01-0,015 % S. Фосфор присутствует в виде оксидов и после расплавления переходит в шлак. Из г. ж., получаемого способами H-Iron, Heganes и Сулинского мет. з-да с 97-99 % FeM механич. измельчением с последующим отжигом изготовляют жел. порошок. Общая пористость г. ж. из руды - 45- 50 %, из окатышей 45-70 %. Насыпная масса - 1,6-2,1 т/м3. Для г. ж. характерна большая уд. поверхность , к-рая, включая внутр. пов-ть открытых пор, сост. 0,2-1 М3/г. Г. ж. имеет по-выш. склонность к вторичному окислению. При темп-pax в печи ниже 550-575 °С охлажд. металлизов. продукт пирофорен (самовозгорается на воздухе при комн. темп-ре). В совр. процессах г. ж. получают при / > 700 °С, что снижает его активность и позволяет хранить на воздухе (в отсутствии влаге) без заметного снижения степени металлизации. Г. ж., произвел, по высокотемп-рной технологии - при / > 850 °С, обладает низкой склонностью ко вторичному окислению при увлажнении, что обеспеч. безопасную транспортировку его в открытых вагонах, перевозку морским (речным) транспортом, хранение в открытых штабелях;

    Железо прямого получения - железо, получаемое химич., электрохимич . или химико-термич. способами непосредст. из руды, минуя домен, печь, в виде порошка , губч. железа (металлизов. окатышей), крицы или жидкого металла. Наиб, развитие получило произ-во губч. железа при 700-1150 °С методами газ. восстановления руды (окатышей) в шахтных печах и с помощью тв. топлива во вращ. печах. Ж. п. п. с 88-93 % FeM, используется как шихта для выплавки стали, а с более высоким содержанием (98- 99 %) для произ-ва жел. порошка;

    Карбонильное железо - порошок железа, получаемый при термич. разложении пентакарбонила железа; отличается высокой чистотой;
    самородное железо - ж., встречающееся в природе в виде минералов. Различают по условиям нахождения теллурич. или земное (никель-железо) и метеоритное (космическое) с. ж. Теллурич. железо - редкий минерал - модификация a-Fe, встречается в виде отд. чешуек, зерен, губч. масс и скоплений. Состав - тв. р-р Fe и Ni (до 30 % Ni). Метеоритное с. ж. образуется в процессах формирования космич. тел и попадает на Землю в виде метеоритов; содержит до 25 % Ni. Цвет серо-стальной до черного, металлич. блеск, непрозрачно, тв. баллов 4-5 по минералогич . шкале, у = 7,3-8,2 г/см3 (в зависимости от содержания Ni). Сильно магнитно, хорошо куется;

    Электролитическое железо - ж., получаемое электролитич. рафинированием; отличается высокой чистотой по примесям (<0,02 % С; 0,01 % О2);
    электротехническое железо - применяемая в электротехнике сталь (или так наз. технич. чистое железо) с суммарным содерж. примесей до 0,08-0,10 %, в т. ч. до 0,05 % С. Э.ж. имеет малое уд. электрич. сопротивление , обладает повыш. потерями на вихревые токи, в связи с чем применение его ограничено в осн. магнитопроводами пост, магнитного потока (полюсные наконечники, магнитопроводы, реле и т.п.);

    А-железо - низкотемп-рная модификация железа с ОЦК решеткой (при 20 °С а = 286,645 пм), устойчивая < 910 °С; a-Fe ферромагнитно при t < 769 °С (точка Кюри);

    У-железо - высокотемп-рная модификация железа с ГЦК решеткой (а= 364 пм), устойчива при 910-1400 °С; парамагнитна;
    5-железо - высокотемп-рная модификация железа с ОЦК решеткой (а = 294 пм), устойчива от 1400 °С до tm, парамагнитна.

    Железо в чистом виде получают различными методами: электролизом водных растворов его солей, термическим разложение в вакууме пентокарбонила Ж. и др.Технически чистое железо – “Армко железо”,”Вит” и др. марки производят в мартеновских печах. В Табл.2 приводится содержание примесей в нек. марках железа., полуаемых приведенными выше методами. Все эти методы за исключением мартеновского весьма дороги.

    Основным промышленным методом получения Ж. служит производство его в виде различных сплавов с углеродом – чугунов и углеродистых сталей. При восстановлении железа в доменных печах образуется чугун, в машиностроении используют в основном сталь. Чугуны получают доменным процессом.

    Химизм доменного процесса следующий:

    3Fe2O3 + CO = 2Fe3O4 + CO2,

    Fe3O4 + CO = 3FeO + CO2,

    FeO + CO = Fe + CO2.

    Чугуны по назначению разделяются на передельный и литеный.Передельный чугун – идет на дальнейшую переработку в углеродистые и др. стали. Литейный – для производства чугунных отливок. Хромисто – никилевые чугуны для дальнейшего извлечения из них никеля либо изготовления малолигированных никелевых и хромо – никелевых сталей.

    Мартеновкий, конверторный и электроплавильный сводятся к удалению избыточного углерода и вредных рпимесей путем их выжигания и к доводке содержания лигирующих элементов до заданного.

    Максимальное содержание углерода в чугуне 4,4%, кремния 1,75%, марганца 1,75%, фосфора 0,30%, серы 0,07%. В сталеплавильной печи содержание углерода, кремния и марганца нужно понизить до десятых долей процента. Передел чугуна осуществляется посредством реакций окисления, проводимых при высоких температурах.Железо, содержание которого в чугуне значительно выше, чем других веществ, частично окисляется:

    2Fe + O2 = 2FeO + Q

    Оксид железа (II), перемешиваясь с расплавом, окисляет кремний, марганец фосфор и углерод:

    Si + 2FeO = SiO2 + 2Fe + Q

    Mn + FeO = MnO + Fe + Q

    2P + 5FeO = P2O5 + 5Fe + Q

    C + FeO = CO + Fe – Q

    После завершения окислительных реакций в сплаве содержится оксид железа (II) от которого необходимо избавиться. Кроме того, нужно довести до установленных норм содержание в стали углерода, кремния и марганца.Этого достигают добавляя раскислители, например ферромарганец. Марганец реагирует с оксидом железа (II):

    Mn + FeO = MnO + Fe

    Углероистые стали классифицируются след. образом:

    основная мартеновская сталь

    кислая мартеновская сталь

    конверторная сталь

    электросталь

    Сжность металлургич процесса получения Ж. и сталей, включая доменный процесс и передел чугуна, является причиной постоянного развития и совершенствования метода прямого получения Ж. из железных руд.

    Синтез 2,2-диэтоксииндандиона
    Аминокислоты, пептиды и протеины, или белки образуют группу химически и биологически родственных соединений, которым принадлежит очень важная роль в жизненных процессах. При полном гидролиз...

    • Обозначение - Fe (Iron);
    • Период - IV;
    • Группа - 8 (VIII);
    • Атомная масса - 55,845;
    • Атомный номер - 26;
    • Радиус атома = 126 пм;
    • Ковалентный радиус = 117 пм;
    • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ;
    • t плавления = 1535°C;
    • t кипения = 2750°C;
    • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,83/1,64;
    • Степень окисления: +8, +6, +4, +3, +2, +1, 0;
    • Плотность (н. у.) = 7,874 г/см 3 ;
    • Молярный объем = 7,1 см 3 /моль.

    Соединения железа :

    Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия .

    На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.

    Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.

    Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe 2+ /Fe 3+ , а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.

    Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).


    Рис. Строение атома железа .

    Электронная конфигурация атома железа - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.


    Рис. Степени окисления железа: +2, +3.

    Физические свойства железа:

    • металл серебристо-белого цвета;
    • в чистом виде достаточно мягкий и пластичный;
    • хобладает хорошей тепло- и электропроводимостью.

    Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.

    Химические свойства железа

    • реагирует с кислородом, в зависимости от температуры и концентрации кислорода могут образовываться различные продукты или смесь продуктов окисления железа (FeO, Fe 2 O 3 , Fe 3 O 4):
      3Fe + 2O 2 = Fe 3 O 4 ;
    • окисление железа при низких температурах:
      4Fe + 3O 2 = 2Fe 2 O 3 ;
    • реагирует с водяным паром:
      3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 ;
    • мелко раздробленное железо реагирует при нагревании с серой и хлором (сульфид и хлорид железа):
      Fe + S = FeS; 2Fe + 3Cl 2 = 2FeCl 3 ;
    • при высоких температурах реагирует с кремнием, углеродом, фосфором:
      3Fe + C = Fe 3 C;
    • с другими металлами и с неметаллами железо может образовывать сплавы;
    • железо вытесняет менее активные металлы из их солей:
      Fe + CuCl 2 = FeCl 2 + Cu;
    • с разбавленными кислотами железо выступает в роли восстановителя, образуя соли:
      Fe + 2HCl = FeCl 2 + H 2 ;
    • с разбавленной азотной кислотой железо образует различные продукты восстановления кислоты, в зависимости от ее концентрации (N 2 , N 2 O, NO 2).

    Получение и применение железа

    Промышленное железо получают выплавкой чугуна и стали.

    Чугун - это сплав железа с примесями кремния, марганца, серы, фосфора, углерода. Содержание углерода в чугуне превышает 2% (в стали менее 2%).

    Чистое железо получают:

    • в кислородных конверторах из чугуна;
    • восстановлением оксидов железа водородом и двухвалентным оксидом углерода;
    • электролизом соответствующих солей.

    Чугун получают из железных руд восстановлением оксидов железа. Выплавку чугуна осуществляют в доменных печах. В качестве источника тепла в доменной печи используется кокс.

    Доменная печь является очень сложным техническим сооружением высотой в несколько десятков метров. Она выкладывается из огнеупорного кирпича и защищается внешним стальным кожухом. По состоянию на 2013 год самая крупная доменная печь была построена в Южной Корее сталелитейной компанией POSCO на металлургическом заводе в городе Кванъян (объем печи после модернизации составил 6000 кубометров при ежегодной производительности 5 700 000 тонн).


    Рис. Доменная печь .

    Процесс выплавки чугуна в доменной печи идет непрерывно в течение нескольких десятилетий, пока печь не выработает свой ресурс.


    Рис. Процесс выплавки чугуна в доменной печи .

    • обогащенные руды (магнитный, красный, бурый железняк) и кокс засыпаются через колошник, расположенный в самом верху доменной печи;
    • процессы восстановления железа из руды под действием оксида углерода (II) протекают в средней части доменной печи (шахте) при температуре 450-1100°C (оксиды железа восстанавливаются до металла):
      • 450-500°C - 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 ;
      • 600°C - Fe 3 O 4 + CO = 3FeO + CO 2 ;
      • 800°C - FeO + CO = Fe + CO 2 ;
      • часть двухвалентного оксида железа восстанавливается коксом: FeO + C = Fe + CO.
    • параллельно идет процесс восстановления оксидов кремния и марганца (входят в железную руду в виде примесей), кремний и марганец входят в состав выплавляющегося чугуна:
      • SiO 2 + 2C = Si + 2CO;
      • Mn 2 O 3 + 3C = 2Mn + 3CO.
    • при термическом разложении известняка (вносится в доменную печь) образуется оксид кальция, который реагирует с оксидами кремния и алюминия, содержащихся в руде:
      • CaCO 3 = CaO + CO 2 ;
      • CaO + SiO 2 = CaSiO 3 ;
      • CaO + Al 2 O 3 = Ca(AlO 2) 2 .
    • при 1100°C процесс восстановления железа прекращается;
    • ниже шахты располагается распар, самая широкая часть доменной печи, ниже которой следует заплечник, в котором выгорает кокс и образуются жидкие продукты плавки - чугун и шлаки, накапливающиеся в самом низу печи - горне;
    • в верхней части горна при температуре 1500°C в струе вдуваемого воздуха происходит интенсивное сгорание кокса: C + O 2 = CO 2 ;
    • проходя через раскаленный кокс, оксид углерода (IV) превращается в оксид углерода (II), являющийся восстановителем железа (см. выше): CO 2 + C = 2CO;
    • шлаки, образованные силикатами и алюмосиликатами кальция, располагаются выше чугуна, защищая его от действия кислорода;
    • через специальные отверстия, расположенные на разных уровнях горна, чугун и шлаки выпускаются наружу;
    • бОльшая часть чугуна идет на дальнейшую переработку - выплавку стали.

    Сталь выплавляют из чугуна и металлолома конверторным способом (мартеновский уже устарел, хотя еще и применяется) или электроплавкой (в электропечах, индукционных печах). Суть процесса (передела чугуна) заключается в понижении концентрации углерода и других примесей путем окисления кислородом.

    Как уже было сказано выше, концентрация углерода в стали не превышает 2%. Благодаря этому, сталь в отличие от чугуна достаточно легко поддается ковке и прокатке, что позволяет изготавливать из нее разнообразные изделия, обладающие высокой твердостью и прочностью.

    Твердость стали зависит от содержания углерода (чем больше углерода, тем тверже сталь) в конкретной марке стали и условий термообработки. При отпуске (медленном охлаждении) сталь становится мягкой; при закалке (быстром охлаждении) сталь получается очень твердой.

    Для придания стали нужных специфических свойств в нее добавляют лигирующие добавки: хром, никель, кремний, молибден, ванадий, марганец и проч.

    Чугун и сталь являются важнейшими конструкционными материалами в подавляющем большинстве отраслей народного хозяйства.

    Биологическая роль железа:

    • в организме взрослого человека содержится около 5 г железа;
    • железо играет важную роль в работе кроветворных органов;
    • железо входит в состав многих сложных белковых комплексов (гемоглобина, миоглобина, различных ферментов).
    Фероксидные катализаторы для малинового пороха, воспламенительного состава, крамельного топлива.
    Способ 1. Получение окиси железа Fe 2 O 3 из железного купороса
    Окислы железа, очень часто применяются как катализаторы в пиротехнических соединениях. Раньше их можно было приобрести в магазинах. Например, моногидрат окиси железа FeOOH встречался как краситель "пигмент жёлтый железоокисный". Окись железа Fe 2 O 3 продавалась в виде железного сурика. В настоящее время купить все это, как выяснилось, непросто. Пришлось озаботиться получением в домашних условиях. Химик из меня никакой, но жизнь заставила. Изучил рекомендации в сети. Увы, нормального, т.е. простого и безопасного, рецепта для домашних условий найти оказалось непросто. Только один рецепт, выглядел вполне подходящим, но найти его повторно мне не удалось. Список допустимых компонентов в голове отложился. Решил действовать по собственной методе. Как ни странно, результат оказался очень даже приемлемым. Соединение получилось с явными признаками окиси железа очень однородное и мелкодисперсное. Использование его в малиновом порохе и вторичном воспламенителе полностью подтвердило, что получено то, что надо.

    Итак, покупаем в садоводческом магазине железный купорос FeSO 4 , в аптеке приобретаем таблетки гидроперита , упаковки три, и запасаемся на кухне питьевой содой NaHCO 3 . Все компоненты есть, начинаем приготовление. Вместо таблеток гидроперита можно воспользоваться раствором перикиси водорода Н 2 0 2 , тоже бывает в аптеках.

    В стеклянной посуде объемом 0,5 литра растворяем в горячей воде около 80г (треть пачки) железного купороса. Небольшими порциями добавляем питьевой соды при помешивании. Образуется какая-то дрянь весьма противного цвета, которая сильно пенится.

    FeSO 4 +2NaHCO 3 =FeCO 3 +Na 2 SO 4 +H 2 O+CO 2

    Поэтому делать все надо в раковине. Добавляем соду до тех пор, пока вспенивание практически не прекратится. Слегка отстояв смесь, начинаем потихоньку засыпать измельченные таблетки гидроперита. Реакция опять происходит довольно живо с образованием пены. Смесь приобретает характерный цвет и появляется знакомый запах ржавчины.

    2FeCO 3 +H 2 O 2 =2FeOOH+2CO 2

    Продолжаем засыпку гидроперита опять-таки до практически полного прекращения вспенивания, то есть реакции.

    Оставляем наш химический сосуд в покое и видим, как выпадает рыжий осадок - это наша окись, точнее моногидрат окиси FeOOH, или гидроксид. Осталось нейтрализовать соединение. Отстаиваем осадок и сливаем лишнюю жидкость. Затем доливаем чистой воды, отстаиваем и опять сливаем. Так повторяем раза 3-4. В конце концов, вываливаем осадок на бумажную салфетку и высушиваем. Полученный порошок является прекрасным катализатором и его уже можно использовать при изготовлении стопинов и вторичного воспламенительного состава , "малинового" пороха и для катализирования карамельных ракетных топлив. /25.01.2008, kia-soft/

    Однако в оригинальном рецепте "малинового" пороха прописано применение чистой красной окиси Fe 2 O 3 . Как показали эксперименты с катализацией карамели , Fe 2 O 3 действительно несколько более активный катализатор, чем FeOOH. Для получения окиси трехвалентного железа достаточно прокалить полученный гидроксид на раскаленном железном листе, или просто в консервной банке. В результате образуется красный порошок Fe 2 O 3 .

    После изготовления муфельной печки , прокаливание произвожу в ней 1-1,5 часа при температуре 300-350°C. Очень удобно. /kia-soft 06.12.2007/

    P.S.
    Независимые исследования ракетчика vega показали, что полученный по этому методу катализатор обладает повышенной активностью по сравнению с промышленными фероксидами, что особенно заметно в сахарном карамельном топливе, получаемом методом выпаривания.

    Способ 2. Получение окиси железа Fe 2 O 3 из хлорного железа
    Сведения о такой возможности есть в сети, например, на форуме болгарских ракетчиков получали оксид с помощью бикарбоната, на форуме химиков упоминали этот способ, но особого внимания я не обращал, поскольку хлорного железа у меня не было. Недавно мне этот вариант напомнил гость моего сайта RubberBigPepper. Очень вовремя, поскольку я активно занялся электроникой и закупился хлоридом. Решил протестировать и этот вариант получения гидроксида железа. Способ в финансовом плане несколько затратнее, и основной компонент хлорное железо труднее достать, однако в плане приготовления проще.

    Итак, нам нужно хлорное железо FeCl 3 и питьевая сода NaHCO 3 . Хлорное железо обычно применяется для травления печатных плат и продается в радиомагазинах.

    Заливаем две чайные ложки порошка FeCl3 стаканом горячей воды и размешиваем до растворения. Теперь потихоньку подсыпаем соду при постоянном помешивании. Реакция протекает живо с пузырением и вспениванием, поэтому спешить не надо.

    FeCl 3 +3NaHCO 3 =FeOOH+3NaCl+3CO 2 +H 2 O

    Сыпем до тех пор, пока пузырение не прекратится. Отстаиваем и получаем в осадке тот же гидроксид FeOOH . Далее нейтрализуем соединение, как в первом способе, путем нескольких сливов раствора, доливов воды и отстаиваний. Наконец, осадок высушиваем и используем в качестве катализатора или для получения окиси железа Fe 2 O 3 путем прокаливания (см.в способе 1).

    Вот такой несложный способ. Выход очень неплохой, из двух чайных ложек (~15г) хлорида получается 10г гидроксида. Катализаторы, полученные данным методом, проверены , они вполне соответствуют. /kia-soft 11.03.2010/

    P.S.
    За стопроцентную достоверность уравнений химических реакций гарантировать не могу, однако по сути они соответствуют проходящим химическим процессам. Особенно темное дело с гидроксидом Fe(III). По всем канонам в осадок должен выпадать Fe(OH) 3 . Но в присутствии перикиси (способ 1) и при повышенной температуре (способ 2), по-идее, происходит дегидратация тригидроксида до моногидрата FeOOH. По внешним признакам так оно и происходит. Получаемый порошок гидроксида по виду конкретная ржавчина, а основной компонент ржавчины именно FeOOH. ***