Войти
В помощь школьнику
  • Учитель татьяна писаревская
  • Синтетические и искусственные высокомолекулярные соединения Искусственное соединение элементов содержания и формы
  • Кристаллические решетки в химии Ионная кристаллическая решетка
  • Отличительные черты личности
  • Аномальные зоны тверской
  • Про легендарную разведывательную "Бешеную роту", позывной "Гюрза" История роты гюрзы
  • Искусственные органические соединения. Синтетические и искусственные высокомолекулярные соединения Искусственное соединение элементов содержания и формы

    Искусственные органические соединения. Синтетические и искусственные высокомолекулярные соединения Искусственное соединение элементов содержания и формы

    Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

    Классификация органических соединений

    Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

    • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
    • альдегиды;
    • кетоны;
    • спирты (двухатомные, одноатомные, многоатомные);
    • простые эфиры;
    • сложные эфиры;
    • карбоновые кислоты;
    • амины;
    • аминокислоты;
    • углеводы;
    • жиры;
    • белки;
    • биополимеры и синтетические полимеры.

    Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

    • алифатические соединения;
    • ароматические вещества;
    • гетероциклические вещества.

    Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

    Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

    Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

    Логика теории строения органических веществ

    Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

    Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

    Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

    Общие положения теории

    Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

    • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
    • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
    • химическое строение обуславливает наличие свойств органического соединения;
    • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
    • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

    Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

    Углеводороды и их производные

    Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

    В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

    Спирты

    Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

    В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

    Альдегиды и кетоны

    После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

    Эфиры (простые и сложные)

    Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

    Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

    Карбоновые кислоты и амины

    Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

    Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

    Аминокислоты

    Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

    Углеводы и жиры

    Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

    Переходные d-элементы и их соединения широко применяются в лабораторной практике, промышленности и технике. Они также играют важную роль в биологических системах. В предыдущем разделе и разд. 10.2 уже упоминалось, что ионы таких d-элементов, как железо, хром и марганец, играют важную роль в окислительновосстановительном титровании и других лабораторных методиках. Здесь мы коснемся только применений этих металлов в промышленности и технике, а также их роли в биологических процессах.

    Применения в качестве конструкционных материалов. Сплавы железа

    Некоторые d-элементы широко используются для изготовления конструкционных материалов, главным образом в виде сплавов. Сплав - это смесь (или раствор) какого-либо металла с одним или несколькими другими элементами.

    Сплавы, главной составной частью которых служит железо, называются сталями. Выше мы уже говорили, что все стали подразделяются на два типа: углеродистые и легированные.

    Углеродистые стали. По содержанию углерода эти стали в свою очередь подразделяются на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую стали. Твердость углеродистых сталей возрастает с повышением содержания углерода. Например, низкоуглеродистая сталь является тягучей и ковкой. Ее используют в тех случаях, когда механическая нагрузка не имеет решающего значения. Различные применения углеродистых сталей указаны в табл. 14.10. На долю углеродистых сталей приходится до 90% всего объема производства стали.

    Легированные стали. Такие стали содержат до 50% примеси одного или нескольких металлов, чаще всего алюминия, хрома, кобальта, молибдена, никеля, титана, вольфрама и ванадия.

    Нержавеющие стали содержат в качестве примесей к железу хром и никель. Эти примеси повышают твердость стали и делают ее устойчивой к коррозии. Последнее свойство обусловлено образованием тонкого слоя оксида хрома (III) на поверхности стали.

    Инструментальные стали подразделяются на вольфрамовые и марганцовистые. Добавление этих металлов повышает твердость, прочность и устойчивость при

    Таблица 14.10. Углеродистые стали

    высоких температурах (жаропрочность) стали. Такие стали используются для бурения скважин, изготовления режущих кромок металлообрабатывающих инструментов и тех деталей машин, которые подвергаются большой механической нагрузке.

    Кремнистые стали используются для изготовления различного электрооборудования: моторов, электрогенераторов и трансформаторов.

    Другие сплавы

    Кроме сплавов железа, существуют также сплавы на основе других d-металлов.

    Сплавы титана. Титан легко сплавляется с такими металлами, как олово, алюминий, никель и кобальт. Сплавы титана характеризуются легкостью, коррозионной устойчивостью и прочностью при высоких температурах. Они используются в авиастроении для изготовления лопастей турбин в турбореактивных двигателях. Их используют также в медицинской промышленности для изготовления электронных устройств, имплантируемых в грудную стенку пациента для нормализации аномального ритма сердца.

    Сплавы никеля. Одним из важнейших сплавов никеля является монель. Этот сплав содержит 65% никеля, 32% меди и небольшие количества железа и марганца. Он используется для изготовления конденсаторных трубок холодильников, пропеллерных осей, а также в химической, пищевой и фармацевтической промышленности. Другим важным сплавом никеля является нихром. Этот сплав содержит 60% никеля, 15% хрома и 25% железа. Сплав алюминия, кобальта и никеля, называемый альнико, используется для изготовления очень сильных постоянных магнитов.

    Сплавы меди. Медь используется для изготовления самых разнообразных сплавов. Наиболее важные из них указаны в табл. 14.11.

    Таблица 14.11. Сплавы меди

    Промышленные катализаторы

    d-Элементы и их соединения находят широкое применение в качестве промышленных катализаторов. Приведенные ниже примеры относятся только к d-элементам первого переходного ряда.

    Хлорид титана . Это соединение используется в качестве катализатора полимеризации алкенов по методу Циглера (см. гл. 20):

    Оксид . Этот катализатор используется на следующей стадии контактного процесса получения серной кислоты (см. гл. 7):

    Железо или оксид . Эти катализаторы используются в процессе Габера для синтеза аммиака (см. гл. 7):

    Никель. Этот катализатор используется для отверждения растительных масел в процессе гидрирования, например в производстве маргарина:

    Медь или оксид меди(II). Эти катализаторы используются для дегидрирования этанола в процессе получения этаналя (уксусного альдегида):

    В качестве промышленных катализаторов применяются также родий (-элемент второго переходного ряда) и платина (-элемент третьего переходного ряда). Оба они используются, например, в процессе Оствальда получения азотной кислоты (см. гл. 15).

    Пигменты

    Мы уже упоминали о том, что одной из важнейших отличительных особенностей d-злементов является их способность образовывать окрашенные соединения. Например, окраска многих драгоценных камней обусловлена присутствием в них небольшого количества примесей d-металлов (см. табл. 14.6). Оксиды d-элементов применяются для изготовления цветных стекол. Например, оксид кобальта (II) придает стеклу темно-синюю окраску. Целый ряд соединений d-металлов используется в различных отраслях промышленности в качестве пигментов.

    Оксид титана . Мировое производство оксида титана превышает 2 млн. т. в год. Он применяется главным образом в качестве белого пигмента в производстве красок и, кроме того, в бумажной, полимерной и текстильной промышленности.

    Соединения хрома. Хромовые квасцы (додекагидрат сульфата хрома имеют фиолетовую окраску. Они используются для крашения в текстильной промышленности. Оксид хрома используется в качестве зеленого пигмента. На основе хромата свинца (IV) изготовляются такие пигменты, как хромовый зеленый, хромовый желтый и хромовый красный.

    Гексацианоферрат(Ш) калия . Это соединение применяется в крашении, травлении и для изготовления светокопировальной бумаги («синьки»).

    Соединения кобальта. Пигмент кобальтовый синий состоит из алюмината кобальта. Пурпурный и фиолетовый пигменты кобальта получают, осаждая соли кобальта с помощью фосфатов щелочноземельных элементов.

    Другие промышленные применения

    До сих пор мы рассматривали применения -элементов в качестве конструкционных сплавов, промышленных катализаторов и пигментов. Эти элементы имеют, кроме того, множество других применений.

    Хром используется для нанесения хромового покрытия на стальных предметах, например на деталях автомашин.

    Чугун. Это не сплав, а неочищенное железо. Его используют для изготовления разнообразных предметов, например сковородок, крышек канализационных люков и газовых плит.

    Кобальт. Изотоп используется в качестве источника гамма-излучения для лечения онкологических заболеваний.

    Медь широко используется в электротехнической промышленности для изготовления проволоки, кабелей и других проводников. Она используется также для изготовления медных канализационных труб.

    d-Элементы в биологических системах

    d-Элементы играют важную роль во многих биологических системах. Например, организм взрослого человека содержит около 4 г железа. Примерно две трети этого количества приходится на долю гемоглобина, красного пигмента крови (см. рис. 14.11). Железо также входит в состав мышечного белка миоглобина и, кроме того, накапливается в таких органах, как печень.

    Элементы, обнаруживаемые в биологических системах в очень небольших количествах, называются микроэлементами. В табл. 14.12 указана масса различных минеральных

    Таблица 14.12. Среднее содержание макро- и микроэлементов в организме взрослого человека

    Марганец - незаменимый компонент пищи домашней птицы.

    К числу микроэлементов, играющих жизненно важную роль для здорового роста сельскохозяйственных растений, относятся многие d-металлы.

    элементов и некоторых микроэлементов в организме взрослого человека. Следует обратить внимание на то, что пять из этих элементов принадлежат к числу d-металлов первого переходного рада. Эти и другие микроэлементы из числа d-металлов выполняют разнообразные важные функции в биологических системах.

    Хром принимает участие в процессе усвоения глюкозы в человеческом организме.

    Марганец входит в состав различных ферментов. Он необходим растениям и является существенным компонентом пищи птиц, хотя не столь важен для овец и крупного рогатого скота. Марганец обнаружен и в человеческом организме, но пока не установлено, насколько он необходим нам. Много марганца содержится в . Хорошими источниками этого элемента служат орехи, специи и крупы.

    Кобальт необходим для овец, крупного рогатого скота и человека. Он содержится, например, в витамине Этот витамин используется для лечения злокачественной пернициозной анемии; он необходим также для образования ДНК и РНК (см. гл. 20).

    Никель обнаружен в тканях человеческого организма, однако его роль пока не установлена.

    Медь является важной составной частью ряда ферментов и необходима для синтеза гемоглобина. Она нужна растениям, а овцы и крупный рогатый скот особенно чувствительны к дефициту меди в рационе питания. При недостатке меди в пище овец появляются ягнята с врожденными уродствами, в частности параличом задних конечностей. В рационе человека единственным продуктом, который содержит значительные количества меди, является печень. Небольшие количества меди содержатся в морепродуктах, бобовых, сушеных фруктах и крупах.

    Цинк входит в состав ряда ферментов. Он необходим для выработки инсулина и является составной частью фермента ангидразы, который играет важную роль в процессе дыхания.

    Заболеиаиия, связанные с недостатком циика

    В начале 1960-х гг. д-р А. С. Прасад открыл в Иране и Индии заболевание, связанное с дефицитом цинка в пище, которое проявляется в замедлении роста детей и анемии. С тех пор недостаток цинка в диете считается главной причиной замедленного развития детей, страдающих от сильного недоедания. Цинк необходим для действия Т-лимфоцитов, без которого иммунная система человеческого организма не может бороться с инфекциями.

    Препараты цинка помогают при сильных отравлениях металлами, а также при некоторых наследственных заболеваниях, например при серповидноклеточной анемии. Серповидноклеточная анемия-врожденный дефект эритроцитов, обнаруживаемый у коренного населения Африки. У больных серповидноклеточной анемией эритроциты имеют аномальную (серповидную) форму и поэтому неспособны переносить кислород. Это происходит из-за пересыщения эритроцитов кальцием, который изменяет распределение зарядов на поверхности клеток. Добавление цинка в диету приводит к тому, что цинк конкурирует с кальцием и уменьшает аномалию формы клеточной мембраны.

    Препараты цинка помогают также в лечении анорексии (потери аппетита) вызванной нарушениями нервной системы.

    Итак, повторим еще раз!

    1. Наиболее распространенным на Земле -элементом является железо, за ним следует титан.

    2. d-Элементы обнаруживаются в виде микропримесей в растениях, организмах животных и в драгоценных камнях.

    3. Для промышленного получения железа используются две руды: гематит и магнетит

    4. Железо получают в доменной печи путем восстановления железной руды оксидом углерода. Для удаления примесей в виде шлака в руду добавляют известняк.

    5. Углеродистые стали получают главным образом при помощи кислородноконвертерного процесса (процесс Линца-Донавица).

    6. Для получения высококачественных легированных сталей используется электроплавильном печь.

    7. Титан получают из ильменитовой руды с помощью процесса Кролля. При этом оксид который содержится в руде, сначала превращают в

    8. Никель получают из пентландитовой руды. Содержащийся в ней сульфид никеля сначала превращают в оксид который затем восстанавливают углеродом (коксом) до металлического никеля.

    9. Для получения меди используется халькопиритовая руда (медный колчедан). Содержащийся в ней сульфид восстанавливают нагреванием в условиях ограниченного доступа воздуха.

    10. Сплав - это смесь (или раствор) какого-либо металла с одним или несколькими другими элементами.

    11. Стали - это сплавы железа, которое является в них главным компонентом.

    12. Твердость углеродистых сталей тем больше, чем больше в них содержание углерода.

    13. Нержавеющая сталь, инструментальная сталь и кремнистая сталь - это разновидности легированных сталей.

    14. Сплавы титана и никеля широко используются в технике. Сплавы меди используются для изготовления монет.

    15. Хлорид оксид оксид оксиды никеля и используются как промышленные катализаторы.

    16. Оксиды -металлов используются для изготовления цветных стекол, другие соединения -металлов используются в качестве пигментов.

    17. d-Металлы играют важную роль в биологических системах. Например, гемоглобин, который является красным пигментом крови, содержит железо.


    Искусственные радиоактивные изотопы образуются в результате деятельности человека: использование ядерной энергии в военных и мирных целях, применение радиоактивных веществ в экономике страны (промышленность, транспорт, сельское хозяйство, медицина, научные исследования и др.). Радионуклиды - продукты деления ядер-ного оружия и выбросы радиационно опасных объектов накапливаются в окружающей среде, в том числе и гидросфере.[ ...]

    Искусственное оструктуривание почв осуществляется введением в них небольшого количества структурообразующих веществ, по преимуществу органических соединений (П. В. Вершинин).[ ...]

    ВЕЩЕСТВО АНТРОПОГЕННОЕ химическое соединение, включенное в геосферы благодаря деятельности человека. Отличают В. а., входящие в биологический круговорот, а потому рано или поздно утилизируемые в экосистемах, и искусственные соединения, чуждые природе, очень медленно разрушаемые живыми организмами и абиотическими агентами и остающиеся вне биосферного обмена веществ. Эти последние накапливаются в биосфере и служат угрозой жизни. Особым случаем В. а. служат химические соединения и элементы, естественно входящие в природные образования, но перемещаемые человеком из одних геосфер в другие или искусст венно концентрируемые им. Примером таких элементов могут служить тяжелые металлы, извлекаемые человеком из глубин Земли па ее поверхность и здесь рассеиваемые, и радиоактивные вещества, в ес тественных условиях обычно рассредоточенные на больших пространствах и в небольших концентрациях.[ ...]

    Состав искусственных радионуклидов, попадающих в водную среду, в настоящее время определяется в основном продуктами деления ядерно-го топлива. Соотношение между ними может меняться в зависимости от типа реактора, его мощности и условий протекания реакций. Заметим также, что в период с

    Вредные вещества содержатся в отходах самых разнообразных видов промышленности: цветной металлургии (соли цветных металлов), машиностроения (цианиды, соединения бериллия, мышьяка и т. д.), производства пластмасс (бензин, эфир, фенол, метилакрилат и т. д.) и искусственного волокна (фосфор, органические соединения, соединения цинка, меди), азотной промышленности (полистирол, хлорбензол, канцерогенные смолы и т. д.), лесной, деревообрабатывающей и целлюлозно-бумажной промышленности (фенол, метиловый спирт, скипидар и т. д.), мясной промышленности (органическое вещество) и многих других.[ ...]

    Сравним искусственную экосистему космического корабля с какой-либо естественной, например, с экосистемой пруда. Наблюдения показывают, что количество организмов в этом биотопе остается (с некоторыми сезонными колебаниями) в основном постоянным. Такую экосистему называют стабильной. Равновесие сохраняется до тех пор, пока не изменятся внешние факторы. Основные из них - приток и отток воды, поступление различных питательных веществ, солнечное излучение. В экосистеме пруда живут различные организмы. Так, после создания искусственного водохранилища оно постепенно заселяется бактериями, планктоном, затем рыбами и высшими растениями. Когда развитие достигло определенной вершины и внешние воздействия остаются долгое время неизменными (приток воды, веществ, излучения, с одной стороны, и отток или испарение, вынос веществ и отток энергии - с другой), экосистема пруда стабилизируется. Между живыми существами устанавливается равновесие.[ ...]

    Существуют искусственно создаваемые экосистемы, которые обеспечивают непрерывный процесс обмена веществ и энергии как внутри природы, так и между ней и человеком. Они подразделяются по воздействию хозяйственного развития на: естест венные, сохранившиеся в неприкосновенности; модифицированные, изменившиеся от деятельности человека; трансформированные, преобразованные человеком.[ ...]

    Ксенобиотики - вещества, полученные искусственным синтезом и не входящие в число природных соединений.[ ...]

    Радиоактивные вещества находят широкое применение во многих отраслях народного хозяйства. Искусственные радиоактивные изотопы применяются для дефектоскопии металлов, при изучении структуры и износа материалов, при разделении веществ и синтезе химических соединений, в аппаратах и приборах, выполняющих контрольно-сигнальные функции в медицине и др.[ ...]

    Метод получения искусственных смесей генерированием токсичных веществ из буферных растворов разработан японскими химиками . Осушенный и очищенный от примесей подогретый воздух пропускают с фиксированной скоростью через поглотители с водными растворами (рН=5-12) цианида калия (получение цианистоводородной кислоты), сульфида натрия (сероводород) сульфита или гидросульфита натрия (диоксид серы), нитрата натрия (оксиды азота) и гидрокарбоната аммония (аммиак). Метод позволяет создавать концентрации этих веществ 10-4-10-5% с погрешностью не более 2-3% (отн.).[ ...]

    Как и упрощенная искусственная экосистема космического корабля, экосистема пруда способна к самоподдержанию. Неограниченному росту препятствуют взаимодействия между растениями-продуцентами, с одной стороны, животными и растениями (кон-сументами и редуцентами) - с другой. Консументы могут размножаться лишь до тех пор, пока они не перерасходуют запас имеющихся питательных веществ. Если их размножение окажется чрезмерным, то рост их численности прекратится, так как им не хватит пищи. Продуцентам в свою очередь постоянно требуются минеральные вещества. Они же вновь пускают в оборот отходы жизнедеятельности. Таким образом возобновляется круговорот: растения (продуценты) поглощают эти минеральные вещества и с помощью солнечной энергии воспроизводят из них богатые энергией питательные вещества.[ ...]

    Экосистема может быть и искусственной. Примером такой экосистемы, крайне упрощенной и неполной по сравнению с естест венной, является космический корабль. Его пилоту в течение длительного времени приходится жить в замкнутом пространстве корабля, обходясь органиченными запасами пищи, кислорода и энергии. При этом желательно по возможности восстанавливать и вторично использовать израсходованные запасы вещества и отходы. Для этого в космическом корабле предусмотрены специальные установки регенерации, а в последнее время ведутся опыты и с живыми организмами (растениями и животными), кот орые должны участвовать в переработке отходов жизнедеятельности космонавта, используя энергию солнечного света.[ ...]

    Пчелиный воск - сложное химическое вещество, вырабатывается восковыми железами пчел. В его состав входит примерно 15 химически самостоятельных компонентов. Его используют в фармацевтическом производстве, зубоврачебной практике, парфюмерной, деревообрабатывающей, кожевенной, бумажной, авиационной и др. отраслях промышленности. Кроме того, в очень большом количестве он необходим для приготовления искусственной вощины. Получают воск при переработке воскового сырья.[ ...]

    Так же опасны сточные воды заводов искусственного волокна, коксохимических и газосланцевых предприятий, содержащие смолистые вещества, фенолы, меркаптаны, органические кислоты, альдегиды, спирты, красители. Их токсическое действие распространяется на большие расстояния, особенно в реках с сильным течением, так как органические примеси сточных вод минерализуются медленно. Накопление жидких отходов в специальных водоемах - хвостохранилищах также чревато большой опасностью для окружающей среды: известны случаи прорыва подобных накопителей и отравления на большом протяжении вод Днестра, Северского Донца и некоторых других.[ ...]

    Общие сведения. Современные методы искусственной биологической очистки позволяют снизить БПК20 и концентрацию взвешенных веществ в сточных водах до 10- 15 мг/л.[ ...]

    Биологическая очистка сточных вод в искусственных сооружениях осуществляется в биологических фильтрах, аэротенках и окситенках. В качестве примера на рис. 18.22 представлена схема биологического фильтра с принудительной подачей воздуха. Исходная сточная вода по трубопроводу 3 портупает в фильтр 2 и через водораспределительные устройства 4 равномерно разбрызгивается по площади фильтра. При разбрызгивании сточная вода поглощает часть кислорода воздуха. В процессе фильтрования через загрузку 5, в качестве которой используют, например, шлак, щебень, керамзит, пластмассу, гравий, на загрузочном материале образуется биологическая пленка, микроорганизмы которой поглощают органические вещества. Интенсивность окисления органических примесей в пленке существенно увеличивается при подаче сжатого воздуха через трубопровод / и опорную решетку в направлении, противоположном фильтрованию. Очищенная от органических примесей вода выводится из фильтра через трубопровод 7.[ ...]

    Ролью микроорганизмов в круговороте веществ человек стал интересоваться лишь после открытия их голландским ученым Антоном Левенгуком в 1674 г., а всерьез исследовать микромир, рассчитывать на его помощь ученые начали с середины XIX в.: бурно развивающаяся промышленность производила такое количество отходов, что веками сложившиеся биоценозы уже не могли с ними справиться. В 1887 г. один из основателей метода биологической очистки Дибдин писал: для очистки сточной жидкости целесообразно применять «специфические микроорганизмы, специально для тех целей культивируемые; потом выдержать жидкость в течение достаточного времени, энергично ее аэрируя, и, наконец, спустить в водоем». В США и других странах с 1890 г. работали и работают биофильтры, в которых жидкие отходы проходят через слой камней, в котором поддерживается смешанная флора микроорганизмов. Естественный или искусственный поток воздуха, противоположный току отходов, обеспечивает аэрацию.[ ...]

    В технике водоснабжения устраиваются искусственные водохранилища, искусственные озера, в которых возникает обилие флоры и фауны, заселяющих всю толщу воды. В процессе жизнедеятельности эти организмы истощают питательные вещества, а вследствие антагонистических отношений происходит частичное уничтожение микрофлоры водной фауной, и с помощью бактериофагов завершается борьба с вредными бактериями.[ ...]

    Гидросфера загрязняется радиоактивными веществами, имеющими два вида происхождения: естественное и искусственное.[ ...]

    Как аккумулятор солнечной энергии, живое вещество должно одновременно реагировать как на внешние (космические) воздействия, так и на внутренние изменения. Увеличение или снижение количества живого вещества в одном месте биосферы должно приводить к синхронному процессу с обратным знаком в другом регионе в силу того, что освободившиеся биогены могут быть ассимилированы остальной частью живого или будет наблюдаться их недостаток. Однако следует учитывать скорость процесса, в случае антропогенного изменения намного более низкую, чем прямое нарушение природы человеком. Кроме того, не всегда происходит адекватная замена. Снижение же размеров особей, участвующих в энергетических процессах, вводит в действие большую группу термодинамических закономерностей из всех групп приведенных выше обобщений (разд. 3.2-3.9). Меняется вся структура живого вещества и его качество, что в конечном итоге не может идти на пользу человеку - одному из участников процесса жизни. Человечество нарушает природные закономерности распределения живого вещества планеты и берет на себя, в свой антропогенный канал, не менее 1,6Х Ю13 Вт энергии в год, или 20% продукции всей биосферы1. Кроме того, люди искусственно и нескомпенсированно снизили количество живого вещества Земли, видимо, не менее чем на 30%. Это заставляет сделать вывод, что планета стоит перед глобальным термодинамическим (тепловым) кризисом, который проявится во многих формах одновременно. Поскольку это инерционный процесс, начальные фазы его мало заметны, но остановить кризисные явления будет чрезвычайно трудно.[ ...]

    В качестве сорбентов применяют различные искусственные и природные пористые материалы: золу, опилки, торф, коксовую мелочь, силикагели, активные глины и др. Эффективными сорбентами являются активированные угли различных марок, активность сорбента характеризуется количеством поглощаемого вещества на единицу объема или массы сорбента (кг/м3, кг/кг).[ ...]

    Удобрения - неорганические и органические вещества, применяемые в сельском хозяйстве и рыбоводстве для повышения урожайности культурных растений и рыбопродуктивности прудов. Они бывают: минеральные (или химические), органические и бактериальные (искусственное внесение микроорганизмов с целью повышения плодородия почв). Минеральные удобрения, добытые из земных недр или промышленно полученные химические соединения, содержат основные элементы питания (азот, фосфор, калий) и важные для жизнедеятельности микроэлементы (медь, бор, марганец и пр.). Органические удобрения - это перегной, торф, навоз, птичий помет (гуано), компосты, биологические добавки и др.[ ...]

    Технология приготовления этих видов топлива различна, однако все они имеют малую зольность и небольшое содержание летучих веществ (5-10 %).[ ...]

    Природные воды могут содержать радиоактивные вещества естественного и искусственного происхождения. Естественной радиоактивностью воды обогащаются, проходя через породы, содержащие радиоактивные элементы (изотопы урана, радия, тория, калия и др.). Солями с искусственной радиоактивностью вода заражается при попадании в нее стоков от промышленных, исследовательских предприятий и медицинских учреждений, использующих радиоактивные препараты. Природная вода также заражается радиоактивными элементами при экспериментальных взрывах термоядерного оружия.[ ...]

    Без строжайшего соблюдения доз и мер предосторожности, дефолианты представляют серьезную опасность для животных и человека. Иногда дефолианты и дефлоранты (для уничтожения цветков растений) используются в военных целях для варварского уничтожения лесных массивов на территории противника. Так, в 60-70-х гг. США применяли эти химические вещества для военных действий в Индокитае, в частности во Вьетнаме над лесными массивами и полями было распылено более 22 млн литров чрезвычайно токсичного дефолианта («оранжевая смесь»). Это привело к полному уничтожению лесов и посевов сельскохозяйственных культур на обширных площадях.[ ...]

    Природные экологические системы в противоположность искусственным (производству) характеризуются замкнутым обращением вещества, причем отходы, связанные с существованием отдельной популяции, являются исходным материалом, обеспечивающим существование другой или чаще нескольких других популяций, входящих в данный биогеоценоз. Биогеоценоз, под которым подразумевается эволюционно сложившаяся совокупность популяций растений, животных и микроорганизмов, свойственная определенной местности, имеет циклическое обращение веществ. Часть веществ экосистемы в связи с перемещениями воздуха, воды, эрозией почвы и т. п. переносится по поверхности Земли и участвует в более общем круговороте веществ в биосфере. Циклическое обращение веществ в отдельных экосистемах и во всей биосфере, сформировавшееся за миллионновековую ее эволюцию, представляет собой прообраз экологически оправданной технологии производства.[ ...]

    Если в данной воде какой-нибудь из этих элементов отсутствует, то искусственно добавляют его. Богаты этими веществами бытовые сточные воды, поэтому их часто добавляют, например, к воде красильно-отбельных фабрик.[ ...]

    Специальные сосуды для гидрокультуры изготовляются во многих моделях из различных искусственных веществ и керамики. Имеются сосуды разных размеров для отдельных растений и большие контейнеры для декоративных композиций. Большие сосуды нередко снабжены держателем для растений (в виде палки), который крепится к специальной пластине на дне контейнера. Гидропонные горшки состоят из наружного сосуда и внутреннего решетчатого вкладыша или вкладыша с многочисленными отверстиями. В каждом сосуде, вне зависимости от его размера, есть указатель уровня раствора. Большей частью это смотровое окошечко со шкалой.[ ...]

    В основе метода определения дегидрогеназной активности лежит способность некоторых веществ - индикаторов приобретать стойкую окраску при переходе из окисленного состояния в восстановленное. Индикатор является как бы искусственным субстратом-акцептором водорода, который при биохимическом окислении переносится на это вещество с окисляемого субстрата ферментами дегидрогеназами. Критерием активности фермента служат скорость обесцвечивания метиленового синего или количество восстановленного ТТХ, т. е. образовавшегося при этом три-фенилфомазона, имеющего красный цвет.[ ...]

    Формула (5.57) имеет преимущества перед ранее применявшимися, по которым при V = 0 концентрация вредного вещества получалась равной бесконечности и приходилось искусственно вводить ограничение расчетной скорости.[ ...]

    Среда урбосистем, как ее географическая, так и геологическая части, наиболее сильно изменена и по сути дела стала искусственной, здесь возникают проблемы утилизации и реутилизации вовлекаемых в оборот природных ресурсов, загрязнения и очистки окружающей среды, здесь происходит все большая изоляция хозяйственно-производственных циклов от природного обмена веществ (биогеохимических оборотов) и потока энергии в природных экосистемах. И, наконец, именно здесь наибольшая плотность населения и искусственная среда, которые угрожают не только здоровью человека, но и выживанию всего человечества. Здоровье человека - индикатор качества этой среды.[ ...]

    Под окружающей нас средой понимается совокупность «чистой» природы и среды, созданной человеком, - распаханные поля, искусственные сады и парки, обводненные пустыни, осушенные болота, крупные города с особым тепловым режимом, микроклиматом, водоснабжением, большим оборотом различных органических и неорганических веществ и т. д.[ ...]

    Нарушение устойчивости коллоидных систем при коагуляции или флокуляции и контактной фильтрации достигается за счет введения веществ, которые способствуют слипанию или соединению коллоидных частиц. Макромолекулы природных и искусственных веществ, в частности полиэлектролитов, имеют высокую тенденцию к накоплению на поверхности раздела фаз. Такие вещества успешно используют в качестве агрегатирующих агентов. Соли железа и алюминия, используемые как коагулянты и дестабилизаторы, также относятся к агрегатирующим агентам благодаря их способности образовывать полиядерныепродукты гидролиза Мп(0Н)т2+, которые хорошо адсорбируются на поверхности раздела частица - вода. С ростом концентрации нейтральных электролитов (не проявляющих специфического взаимодействия) коллоиды также становятся менее устойчивыми из-за того, что диффузная часть двойного электрического слоя сжимается противоионами .[ ...]

    Метод получения растений из одной клетки основан на способности тканей растений ряда видов к неорганическому росту на специальных искусственных Средах, содержащих питательные вещества и регуляторы роста. При культивировании тканей растений на таких средах многие клетки оказываются способными к неограниченному размножению, образуя слои (массу) недифференцированных клеток, получивших название каллуса. Если затем каллус разделить на отдельные клетки и продолжить культивирование изолированных клеток на питательных средах, то из отдельных (одиночных) клеток могут развиться настоящие растения. Способность одиночных соматических клеток растений развиваться в настоящее (целое) растение называют тотипотентностыо. Возможно, тотипотентность присуща клеткам всех листостебельных растений. Но пока она обнаружена у растений ограниченного круга. В частности, эта способность обнаружена у клеток картофеля, моркови, табака и ряда других видов сельскохозяйственных культур. Этот метод клеточной инженерии растений уже вошел в широкую практику. Однако растения, развившиеся из одной клетки, характеризуются генетической нестабильностью, что связано с мутациями их хромосом. Поскольку генетическая нестабильность дает разнообразные формы растений, они очень полезны в качестве исходного материала для селекции.[ ...]

    В содержании экологических отношений выделяют два структурных элемента - социально-экологические отношения, которые складываются между людьми в искусственной среде их обитания и косвенно воздействуют на естественную среду обитания людей и реально-практические отношения, которые включают, во-первых, отношения человека непосредственно к естественной среде обитания, во-вторых, отношения в материально-производственных сферах человеческой жизнедеятельности, связанных с процессом присвоения человеком природных сил, энергии и вещества и в-третьих, отношения человека к естественным условиям своего существования как общественного существа.[ ...]

    Далее, очевидно, что наибольшая продукция зерна приходится на более раннюю стадию развития растений, чем максимальная общая чистая продукция (накопление сухого вещества) (фиг. 15, 2>). В последние годы урожаи зерновых значительно повысились благодаря тому, что было обращено внимание на структуру урожая. Выведены сорта с высоким отношением веса зерна к весу соломы, которые к тому же быстро дают листья, так что листовой индекс достигает 4 и остается на этом уровне до самой жатвы, которая проводится в момент наибольшего накопления питательных веществ (см. Лумис и др., 1967; Арми и Грир, 1967). Такой искусственный отбор не обязательно увеличивает общую продукцию сухого вещества для всего растения; он приводит к перераспределению этой продукции, в результате чего больше продукции приходится на зерно и меньше - на листья, стебли и корни (см. табл. 36).[ ...]

    С тридцатых - сороковых годов нашего столетия в связи с развитием использования атомной энергии окружающая среда стала существенно загрязняться радиоактивными веществами и источниками излучения. Особо опасные загрязнения связаны с разработкой, испытанием и использованием (атомные бомбы, сброшенные на Хиросиму и Нагасаки) ядерного оружия. Радиационные методы окисления парафинов в производстве моющих средств позволяют заменить пищевые жиры синтетическими смолами. Радиоактивные изотопы (меченые атомы), введенные в процессы, и химические соединения повышают возможности изучения и совершенствования технологии. В производстве искусственного волокна радиоактивные изотопы используются для снятия зарядов статического электричества. Метод рент-генодефектоскопин получил широкое распространение ¡для обнаружения дефектов в отливках и сварных швах.[ ...]

    Следующий предполагаемый этап на пути возникновения жизни - появление протоклеток. Выдающийся советский биохимик А.И.Опарин показал, что в стоящих растворах органических веществ образуются кооцерваты - микроскопические «капельки», ограниченные полупроницаемой оболочкой - первичной мембраной. В них могут концентрироваться органические вещества, быстрее идут реакции и обмен веществ с окружающей средой; они даже могут делиться, как бактерии. Подобный процесс при растворении искусственных протеи-ноидов наблюдал Фокс, назвавший эти капельки микросферами.[ ...]

    Простейшие встречаются всюду в сточных водах, иле, испражнениях, почве, пыли, воде рек, озер, океанов, на очистных сооружениях, работающих в аэробных условиях. Они принимают активное участие в минерализации органических веществ в естественных и искусственных условиях очистки природных и сточных вод. Но следует помнить, что некоторые простейшие являются возбудителями заболеваний человека и животных.[ ...]

    Переработка собранного лесосеменного сырья начинается с извлечения семян из шишек хозяйственно ценных пород (сосна обыкновенная, ель европейская, лиственница сибирская). Для этих целей служат естественная (воздушно-солнечная) и искусственная сушки, последняя осуществляется в специальных камерах шишкосушилок. Применяют стационарные (рис. 1.3) и передвижные шишкосушилки ШП-0,06 (рис. 1.4), СМ-45 стеллажного и барабанного типов, которые входят в комплексы по переработке шишек и имеют помещения для приёмки лесосеменного сырья, склады для его хранения и технологическое здание. В нём размещены сушильные камеры, в которые подаётся подогретый атмосферный воздух не выше 45 °С для ели и 50 °С для сосны. При таком режиме сушки, приближающемся к естественному, не происходит как запаривания, как и перегрева семян. Повышение температуры сушки выше указанных пределов приводит к уплотнению запасного питательного вещества в клетках семени, что ослабляет жизнедеятельность его зародыша. Нарушается обмен веществ, затрудняется работа ферментов в момент прорастания семени, развиваются болезнетворные бактерии и споры грибов, приводящие к гибели семян.[ ...]

    Иное дело - антропогенная, созданная человеком экологическая система. Для нее справедливы все основные законы природы, но в отличие от природного биогеоценоза она не может рассматриваться как открытая. Рассмотрим, например, экосистему искусственного аэрационного сооружения для очистки сточных вод - аэротенка. При поступлении в аэротенк содержащиеся в сточных водах вещества сорбируются поверхностью так называемого активного ила, т.е. хлопьевидными скоплениями бактерий, простейших и других организмов. Частично эти вещества усваиваются организмами активного ила, частично - сорбируются, и активный ил оседает на дно аэротенка. При непрерывном поступлении сточных вод содержащиеся в них вещества накапливаются в аэротенке, а концентрация активного ила в аэротенке снижается, и его прирост недостаточен для поддержания концентрации, необходимой для сорбирования вредных веществ. В конечном итоге равновесное состояние такой экосистемы нарушается, качество очистки снижается, возникают нежелательные процессы, например,«вспухание» ила, связанное с массовым размножением грибов и нитчатых водорослей, подавляющих бактерии. В результате система перестает работать.[ ...]

    Современные интенсивные технологии производства витаминной муки состоят в быстром (за несколько минут) высушивании зеленой фитомассы в потоке горячего теплоносителя и последующем измельчении ее частиц до размеров 1,5...2 мм. Питательные вещества и витамины лучше сохраняются при интенсивной искусственной сушке, чем при естественном вентилировании. Однако нарушение технологии скоростной сушки приводит к ухудшению состава питательных компонентов древесной зелени и снижает их усвояемость. Необходимо точное регулирование температуры теплоносителя и скорости прохождения сырья в зависимости от влажности зеленой фитомассы, температуры окружающего воздуха и других параметров.[ ...]

    У летка и вблизи улья создается своеобразный гул кружащихся роевых пчел. Пчелы, поднявшись в воздух, кружатся некоторое время на недалеком расстоянии от улья. Затем они начинают собираться на ветке или стволе (в случае отсутствия устраивают искусственные места - «привои»), к ним присоединяется матка. Сбор роя в одно место ускоряется тем, что пчелы той группы, где находится матка, поднимают брюшко и открывают железы, выделяющие вещество с сильным запахом и усиленно взмахивают крылышками, распространяя запах в пространстве.[ ...]

    Наряду с этим необходимо обратить внимание на проблему, связанную с экологической нишей животных, т. е. функцией, которую они выполняют в биогеоценозе. Благодаря этой функции, характеризующейся потреблением и преобразованием травоядными органического вещества растений, поддерживается нормальное состояние природных биогеоценозов. Однако в условиях животноводческих комплексов как искусственных экосистем это нарушается, что приводит к неблагоприятным изменениям в природе.[ ...]

    Специальные мероприятия по защите подземных вод от загрязнения направлены на перехват загрязненных вод с помощью дренажа, а также на изоляцию источников загрязнения от остальной части водоносного горизонта. Весьма перспективным в этом отношении является создание искусственных геохимических барьеров, основанных на переводе загрязняющих веществ в малоподвижные формы. Для ликвидации локальных очагов загрязнения ведут длительные откачки загрязненных подземных вод из специальных скважин.[ ...]

    Классическим примером использования направленных помех является защита дубовых лесов в США от непарного шелкопряда. В одном из вариантов защиты лесов использовали то обстоятельство, что небольшой подвижный самец находит более крупную малоподвижную самку по запаху выделяемого ею привлекающего вещества, причем на довольно значительном расстоянии (десятки и сотни метров). Путем специальных исследований ученым удалось идентифицировать химический состав этого вещества (аттрактанта) и создать его искусственный аналог. Этим аналогом пропитывали (или покрывали) мелкие кусочки специальной бумаги, которые рассеивали над лесами с самолетов, создавая тем самым запаховый фон и препятствуя ориентированию самцов в поисках самок.[ ...]

    Глубокая очистка сточных вод может исключить попадание N и Р в водоемы, поскольку при механической очистке содержание этих элементов снижается на 8-10%, при биологической - на 35-50 % и при глубокой очистке - на 98-99 %. Кроме того, разработан ряд мероприятий, позволяющих бороться с процессом эвтрофикации непосредственно в водоемах, например искусственное увеличение содержания кислорода с помощью аэрационных установок. Такие установки работают в настоящее время в СССР, ПНР, Швеции и других странах. Для снижения роста водорослей в водоемах используют различные гербициды. Однако установлено, что для условий Великобритании стоимость глубокой очистки сточных вод от биогенных веществ будет ниже, чем стоимость гербицидов, затраченных на снижение роста водорослей в водоемах. Существенным для последних является.снижение концентрации нитратов, представляющих опасность для здоровья человека. Всемирной организацией здравоохранения предельно допустимая концентрация нитратов в питьевой воде принята равной 45 мг/л или в пересчете на азот 10 мг/л, такая же величина принята по санитарным нормам для воды водоемов. Количество и характер соединений азота и фосфора влияют на общую продуктивность водоемов, вследствие чего они включены в число главных показателей при оценке степени загрязнения водоисточников.[ ...]

    Высоконагружаемые биофильтры или аэрофильтры отличаются от капельных высокой окислительной мощностью, которая достигается особенностью их устройства. В этом сооружении крупность зерен загрузки больше, чем в капельных фильтрах, она колеблется от 40 до 05 мм. Это способствует повышению нагрузки по сточной жидкости. Особая конструкция днища и дренажа обеспечивает искусственную продувку сооружения воздухом. Сравнительно большая скорость движения сточной жидкости в теле биофильтра обеспечивает постоянный вынос из него задержанных трудноокнеляемых нерастворимых веществ и отмершую биологическую пленку.[ ...]

    В отличие от химического (ингредиентного) загрязнения, подобные формы представляют собой физическое (или параметрическое) загрязнение, связанное с отклонением от нормы физических параметров окружающей среды. Наряду с тепловым (термальным), опасными видами загрязнения являются световое - нарушение естественного режима освещенности в том или ином месте в результате воздействия искусственных источников света, приводящее к аномалиям в жизни животных и растений; шумовое - в результате увеличения интенсивности и повторяемости шума сверх природного уровня; вибрационное; электромагнитное, возникающее в результате изменения электромагнитных свойств среды из-за наличия линий электропередач, мощных электроустановок, разного рода излучателей и приводящее к местным и глобальным геофизическим аномалиям и изменениям в тонких биологических структурах; радиоактивное - превышение естественного уровня содержания радиоактивных веществ в окружающей среде.[ ...]

    Закон об уголовной ответственности за нанесение ущерба ОС вступил в силу с 1 января 1991 г. также в Германии. По новому Закону уголовную ответственность влечет за собой не только химическое, но и физическое воздействие на ОС (сотрясения, шумы, излучения, выбросы тепла и пара и т.д.). Уголовные санкции применяются как при аварийных загрязнениях, так и в случае постепенного нарастания экологической деградации. Процедура доказательства вины существенно облегчена: потерпевшему достаточно в своих показаниях убедить следственные органы, что предприятие способно причинить возникший ущерб. Устанавливается предельная величина штрафа (независимо от количества пострадавших) в размере 160 млн марок. В Законе заранее оговорены 96 типов производственных объектов, подпадающих под уголовную ответственность. Они относятся к следующим отраслям и видам деятельности: теплоснабжение, горное дело, энергетика, производство стекла и керамики, черная металлургия, сталелитейное производство, химия, фармацевтика, нефтяная промышленность, производство искусственных веществ, деревообработка, целлюлозно-бумажная и пищевая промышленность, утилизация и переработка отходов, хранение опасных веществ .

    Если спросить ученых, какие из открытий XX в. важнейшие, то едва ли кто-нибудь забудет назвать искусственный синтез химических элементов. За короткий срок - менее 40 лет- список известных химических элементов увеличился на 18 названий. И все 18 были синтезированы, приготовлены искусственным путем.

    Слово "синтез" обычно обозначает процесс получения из простого сложного. Например, взаимодействие серы с кислородом есть химический синтез двуокиси серы SO 2 из элементов.

    Синтез элементов молено понимать таким лее образом: искусственное получение из элемента с меньшим зарядом ядра, меньшим порядковым номером элемента с большим порядковым номером. А сам процесс получения называется ядерной реакцией. Ее уравнение записывается так же, как и уравнение обыкновенной химической реакции. В левой части реагирующие вещества, в правой - получающиеся продукты. Реагирующие вещества в ядерной реакции - это мишень и бомбардирующая частица.

    Мишенью может служить любой элемент периодической системы (в свободном виде или в виде химического соединения).

    Роль бомбардирующих частиц играют α-частицы, нейтроны, протоны, дейтроны (ядра тяжелого изотопа водорода), а также так называемые многозарядные тяжелые ионы различных элементов - бора, углерода, азота, кислорода, неона, аргона и других элементов периодической системы.

    Чтобы произошла ядерная реакция, необходимо столкновение бомбардирующей частицы с ядром атома мишени. Если частица обладает достаточно большой энергией, то она может настолько глубоко проникнуть к ядру, что сольется с ним. Так как все перечисленные выше частицы, кроме нейтрона, несут положительные заряды, то, сливаясь с ядром, они увеличивают его заряд. А изменение значения Z и означает превращение элементов: синтез элемента с новым значением заряда ядра.

    Чтобы найти способ ускорять бомбардирующие частицы, придавать им большую энергию, достаточную для их слияния с ядрами, изобрели и сконструировали специальный ускоритель частиц- циклотрон. Затем построили специальную фабрику новых элементов - ядерный реактор. Его прямое назначение- вырабатывать ядерную энергию. Но поскольку в нем всегда существуют интенсивные потоки нейтронов, то их легко использовать для целей искусственного синтеза. Нейтрон не имеет заряда, и потому его не надо (да и невозможно) ускорять. Напротив, медленные нейтроны оказываются более полезными, чем быстрые.

    Химикам пришлось изрядно поломать голову и проявить подлинные чудеса изобретательности, чтобы разработать способы отделения ничтожных количеств новых элементов от вещества мишени. Научиться изучать свойства новых элементов, когда в наличии были считанные количества их атомов...

    Трудами сотен и тысяч ученых в периодической системе было заполнено восемнадцать новых клеток.

    Четыре - в ее старых границах: между водородом и ураном.

    Четырнадцать - за ураном.

    Вот как все это происходило...

    Технеций, прометий, астат, франций... Четыре места в периодической системе долго оставались пустыми. Это были клетки № 43, 61, 85 и 87. Из четырех элементов, которые должны были занять эти места, три предсказаны Менделеевым: экамарганец - 43, экаиод - 85 и экацезий - 87. Четвертый - № 61 - должен был принадлежать к редкоземельным элементам.

    Эти четыре элемента были неуловимы. Усилия ученых, направленные на их поиски в природе, оставались безуспешными. С помощью периодического закона давно уже были заполнены все остальные места в таблице Менделеева - от водорода до урана.

    Не один раз в научных журналах появлялись сообщения об открытии этих четырех элементов. Экамарганец "открывали" в Японии, где ему дали имя "ниппоний", в Германии назвали "мазурий". Элемент № 61 "открывали" в разных странах по крайней мере трижды, он получал имена "иллиний", "Флоренции", "цикл оний". Экаиод находили в природе также неоднократно. Ему давали имена "алабамий", "гельвеций". Экацезий, в свою очередь, получал названия "Виргинии", "Молдавии". Некоторые из этих названий попадали в различные справочники и даже проникали в школьные учебники. Но все эти открытия не подтверждались: каждый раз точная проверка показывала, что допущена ошибка, и случайные ничтожные примеси были приняты за новый элемент.

    Долгие и трудные поиски привели наконец к открытию в природе одного из неуловимых элементов. Оказалось, что экацезий, который должен занимать в периодической таблице 87-е место, возникает в цепочке распада природного радиоактивного изотопа урана-235. Это короткоживущий радиоактивный элемент.

    Элемент № 87 заслуживает того, чтобы о нем рассказать подробнее.

    Теперь в любой энциклопедии, в любом учебнике по химии читаем: франций (порядковый № 87) открыт в 1939 г. французским ученым Маргаритой Перей. Кстати сказать, это третий случай, когда честь открытия нового элемента принадлежит женщине (раньше Мария Кюри открыла полоний и радий, Ида Ноддак - рений).

    Как Перей все лее удалось поймать неуловимый элемент? Вернемся на много лет назад. В 1914 г. три австрийских радиохимика - С. Мейер, В. Гесс и Ф. Панет - занялись изучением радиоактивного распада изотопа актиния с массовым числом 227. Было известно, что он входит в семейство актиноурана и испускает β-частицы; следовательно, продукт его распада торий. Однако у ученых мелькали смутные подозрения, что актиний-227 в редких случаях испускает и α-частицы. Иными словами, здесь наблюдается один из примеров радиоактивной вилки. Легко сообразить: в ходе такого превращения должен образовываться изотоп элемента № 87. Мейер и его коллеги действительно наблюдали α-частицы. Требовались дальнейшие исследования, но они были прерваны первой мировой войной.

    Маргарита Перей шла по тому же пути. Но в ее распоряжении были более чувствительные приборы, новые, усовершенствованные методы анализа. Поэтому-то ей и сопутствовал успех.

    Франций относят к числу искусственно синтезированных элементов. Но все-таки сначала элемент был обнаружен в природе. Это изотоп франций-223. Его период полураспада составляет всего 22 минуты. Становится понятным, почему франция так мало на Земле. Во-первых, из-за своей недолговечности он не успевает концентрироваться в сколь-либо заметных количествах, во-вторых, сам процесс его образования отличается невысокой вероятностью: всего 1,2% ядер актиния-227 распадается с испусканием α-частиц.

    В связи с этим франций выгоднее приготовлять искусственным путем. Уже получено 20 изотопов франция, и самый долгоживущий из них - франций-223. Работая с совершенно ничтожными количествами солей франция, химики сумели доказать, что по своим свойствам он чрезвычайно похож: на цезий.

    Элементы № 43, 61 и 85 оставались неуловимыми. В природе их никак не удавалось найти, хотя ученые уже владели могучим методом, безошибочно указывающим путь для поиска новых элементов, - периодическим законом. Все химические свойства неизвестного элемента благодаря этому закону были известны ученым заранее. Так почему же были безуспешны поиски этих трех элементов в природе?

    Изучая свойства атомных ядер, физики пришли к выводу: у элементов с атомными номерами 43, 61, 85 и 87 не могут существовать стабильные изотопы. Они могут быть только радиоактивными, с короткими периодами полураспада и должны быстро исчезать. Поэтому все эти элементы были созданы человеком искусственно. Пути для создания новых элементов были указаны периодическим законом. Попробуем с его помощью сами наметить путь синтеза экамарганца. Этот элемент № 43 был первым искусственно созданным.

    Химические свойства элемента определяются его электронной оболочкой, а она зависит от заряда атомного ядра. В ядре элемента № 43 должно быть 43 положительных заряда, и вокруг ядра должны вращаться 43 электрона. Как же можно создать элемент с 43 зарядами в атомном ядре? Как можно доказать, что такой элемент создан?

    Рассмотрим внимательно, какие элементы в периодической системе располагаются у пустого места, предназначенного для элемента № 43. Оно находится почти в середине пятого периода. На соответствующих местах в четвертом периоде стоит марганец, а в шестом - рений. Поэтому химические свойства 43-го элемента должны быть похожи на свойства марганца и рения. Недаром Д. И. Менделеев, предсказавший этот элемент, назвал его экамарганцем. Слева от 43-ей клетки находится молибден, занимающий клетку 42, справа, в 44-й - рутений.

    Следовательно, чтобы создать элемент № 43, необходимо увеличить число зарядов в ядре атома, имеющего 42 заряда, еще на один элементарный заряд. Поэтому для синтеза нового элемента № 43 нужно взять в качестве исходного сырья молибден. У него в ядре как раз 42 заряда. Одним положительным зарядом обладает самый легкий элемент- водород. Итак, можно ожидать, что элемент № 43 может быть получен в результате ядерной реакции между молибденом и водородом.

    Свойства элемента № 43 должны быть сходными с химическими свойствами марганца и рения, и, для того чтобы обнаружить и доказать образование этого элемента, нужно воспользоваться химическими реакциями, аналогичными тем, с помощью которых химики определяют присутствие малых количеств марганца и рения. Вот каким образом периодическая система дает возможность наметить путь для создания искусственного элемента.

    Точно таким же путем, который мы только что наметили, и был создан в 1937 г. первый искусственный химический элемент. Он получил знаменательное имя- технеций - первый элемент, изготовленный техническим, искусственным путем. Вот как был осуществлен синтез технеция. Пластинка молибдена подвергалась интенсивной бомбардировке ядрами тяжелого изотопа водорода - дейтерия, которые были разогнаны в циклотроне до огромной скорости.

    Ядра тяжелого водорода, получившие очень большую энергию, проникли в ядра молибдена. После облучения в циклотроне пластинка молибдена была растворена в кислоте. Из раствора было выделено с помощью тех же реакций, которые необходимы для аналитического определения марганца (аналог элемента № 43), ничтожное количество нового радиоактивного вещества. Это и был новый элемент- технеций. Вскоре были подробно изучены его химические свойства. Они точно соответствуют положению элемента в менделеевской таблице.

    Теперь технеций стал вполне доступным: он образуется в довольно больших количествах в атомных реакторах. Технеций хорошо изучен, уже практически используется. С помощью технеция исследуют процесс коррозии металлов.

    Метод, каким был создан 61-й элемент, очень похож на метод, которым получают технеций. Элемент №61 должен быть редкоземельным элементом: 61-я клетка находится между неодимом (№ 60) и самарием (№ 62). Новый элемент впервые был получен в 1938 г. в циклотроне бомбардировкой неодима ядрами дейтерия. Химическим путем 61-й элемент был выделен лишь в 1945 г. из осколочных элементов, образующихся в ядерном реакторе в результате деления урана.

    Элемент получил символическое имя прометий. Это название было дано ему неспроста. Древнегреческий миф рассказывает о том, что титан Прометей похитил с неба огонь и передал его людям. За это он был наказан богами: его приковали к скале, и громадный орел ежедневно терзал его. Название "прометий" не только символизирует драматический путь похищения наукой у природы энергии ядерного деления и овладения этой энергией, но и предостерегает людей от страшной военной опасности.

    Прометий теперь получают в немалых количествах: его используют в атомных батарейках- источниках постоянного тока, способных действовать без перерыва несколько лет.

    Аналогичным путем был синтезирован и самый тяжелый галоген- экаиод- элемент № 85. Он впервые был получен бомбардировкой висмута (№ 83) ядрами гелия (№ 2), ускоренными в циклотроне до больших энергий.

    Ядра гелия, второго элемента в периодической системе, обладают двумя зарядами. Поэтому для синтеза 85-го элемента был взят висмут - 83-й элемент. Новый элемент назван астатом (неустойчивый). Он радиоактивен, быстро исчезает. Его химические свойства также оказались точно соответствующими периодическому закону. Он похож: на иод.

    Трансурановые элементы.

    Много труда положили химики, разыскивая в природе элементы тяжелее урана. Не раз в научных журналах появлялись торжествующие извещения о "достоверном" открытии нового "тяжелого" элемента с атомной массой большей, чем у урана. Например, элемент № 93 "открывали" в природе многократно, он получал имена "богемий", "секваний". Но эти "открытия" оказывались следствием ошибок. Они характеризуют трудность точного аналитического определения ничтожных следов нового неизвестного элемента с неизученными свойствами.

    Результат этих поисков был отрицательным, потому что элементов, соответствующих тем клеткам таблицы Менделеева, которые должны быть расположены за 92-й клеткой, на Земле практически нет.

    Первые попытки искусственно получить новые элементы тяжелее урана связаны с одной из замечательных ошибок в истории развития науки. Было замечено, что под влиянием потока нейтронов многие элементы становятся радиоактивными и начинают испускать β-лучи. Ядро атома, потеряв отрицательный заряд, сдвигается в периодической системе на одну клетку вправо, и его порядковый номер становится на единицу больше - происходит превращение элементов. Так под воздействием нейтронов обычно образуются более тяжелые элементы.

    Попытались подействовать нейтронами и на уран. Ученые надеялись, что так же, как и у других элементов, у урана при этом появится β-активность и в результате β-распада возникнет новый элемент с номером, на единицу большим. Он-то и займет 93-ю клетку в системе Менделеева. Высказывали предположение, что этот элемент должен быть похож: на рений, поэтому его заранее назвали экарением.

    Первые опыты, казалось, сразу же подтвердили такое предположение. Даже больше- обнаружилось, что при этом возникает не один новый элемент, а несколько. Были опубликованы сообщения о пяти новых элементах тяжелее урана. Кроме экарения были "обнаружены" экаосмий, экаиридий, экаплатина и эказолото. И все открытия оказались ошибкой. Но то была амечательная ошибка. Она привела науку к величайшему из достижений физики за всю историю человечества- к открытию деления урана и овладению энергией атомного ядра.

    Никаких трансурановых элементов в действительности не было найдено. У странных новых элементов тщетно пытались найти предполагаемые свойства, которыми должны были обладать элементы от экарения да эказолота. И вдруг среди этих элементов неожиданно были обнаружены радиоактивный барий и лантан. Не трансурановые, а самые обычные, но радиоактивные изотопы элементов, места которых находятся в середине периодической системы Менделеева.

    Прошло немного времени, и этот неожиданный и очень странный результат был правильно понят.

    Почему из атомных ядер урана, стоящего в конце периодической системы элементов, при действии нейтронов образуются ядра элементов, места которых находятся в ее середине? Например, при действии нейтронов на уран возникают элементы, соответствующие следующим клеткам периодической системы:


    Много элементов было найдено в невообразимо сложной смеси радиоактивных изотопов, образующихся в уране, облученном нейтронами. Хотя они оказались старыми, давно знакомыми химикам элементами, в то же время это были новые вещества, впервые созданные человеком.

    В природе нет радиоактивных изотопов брома, криптона, стронция и многих других из тридцати четырех элементов - от цинка до гадолиния, возникающих при облучении урана.

    В науке часто так бывает: самое загадочное и самое сложное оказывается простым и ясным, когда оно разгадано и понято. Когда нейтрон попадает в ядро урана, оно раскалывается, расщепляется на два осколка - на два атомных ядра меньшей массы. Эти осколки могут быть различного размера, поэтому-то и образуется так много различных радиоактивных изотопов обычных химических элементов.

    Одно атомное ядро урана (92) распадается на атомные ядра брома (35) и лантана (57), осколки при расщеплении другого могут оказаться атомными ядрами криптона (36) и бария (56). Сумма атомных номеров образующихся осколочных элементов будет равна 92.

    Это было началом цепи великих открытий. Вскоре обнаружили, что под ударом нейтрона возникают из ядра атома урана-235 не только осколки - ядра с меньшей массой, но и вылетают два-три нейтрона. Каждый из них, в свою очередь, способен снова вызвать деление ядра урана. А при каждом таком делении выделяется очень много энергии. Это и стало началом овладения человеком внутриатомной энергией.

    Среди огромного множества продуктов, возникающих при облучении ядер урана нейтронами, был впоследствии обнаружен остававшийся долгое время незамеченным первый настоящий трансурановый элемент № 93. Он возникал при действии нейтронов на уран-238. По химическим свойствам он оказался весьма сходным с ураном и совсем не был похож: на рений, как это ожидали при первых попытках синтезировать элементы тяжелее урана. Поэтому его и не могли сразу обнаружить.

    Первый созданный человеком элемент, лежащий за пределами "естественной системы химических элементов", был назван нептунием по имени планеты Нептун. Его создание расширило для нас границы, определенные самой природой. Так же и предсказанное открытие планеты Нептун расширило границы наших знаний о Солнечной системе.

    Вскоре был синтезирован и 94-й элемент. Он был назван в честь последней планеты. Солнечной системы.

    Его назвали плутонием. В периодической системе Менделеева он следует по порядку за нептунием, аналогично "последней планете Солнечной* системы Плутону, орбита которой лежит за орбитой Нептуна. Элемент № 94 возникает из нептуния при его β-распаде.

    Плутоний - единственный из трансурановых элементов, который теперь получают в атомных реакторах в очень больших количествах. Так же как и уран-235, он способен делиться под действием нейтронов и применяется как топливо в атомных реакторах.

    Элементы № 95 и № 96 носят названия америций и кюрий. Их также получают теперь в атомных реакторах. Оба элемента обладают очень большой радиоактивностью - испускают α-лучи. Радиоактивность этих элементов настолько велика, что концентрированные растворы их солей нагреваются, закипают и очень сильно светятся в темноте.

    Все трансурановые элементы - от нептуния до америция и кюрия- были получены в достаточно больших количествах. В чистом виде это металлы серебристого цвета, все они радиоактивны и по химическим свойствам в чем-то похожи друг на друга, а в чем-то заметно различаются.

    Был выделен в чистом виде и 97-й элемент - берклий. Для этого пришлось поместить чистый препарат плутония внутрь ядерного реактора, где он целых шесть лет находился под действием мощного потока нейтронов. За это время в нем накопилось несколько микрограммов элемента № 97. Плутоний извлекли из атомного реактора, растворили в кислоте и из смеси выделили наиболее долгоживущий берклий-249. Он сильно радиоактивен - за год распадается наполовину. Пока удалось получить только несколько микрограммов берклия. Но этого количества хватило ученым, чтобы точно изучить его химические свойства.

    Очень интересен элемент № 98 - калифорний, шестой после урана. Калифорний впервые был создан посредством бомбардировки мишени из кюрия α-частицами.

    Увлекательна история синтеза двух следующих трансурановых элементов: 99-го и 100-го. Впервые они были найдены в облаках и в "грязи". Чтобы изучить, что образуется при термоядерных взрывах, самолет пролетал сквозь взрывное облако, и на бумажные фильтры были собраны пробы осадка. В этом осадке и были найдены следы двух новых элементов. Чтобы получить более точные данные, на месте взрыва собрали большое количество "грязи" - измененной взрывом почвы и горной породы. Эту "грязь" переработали в лаборатории, и из нее выделили два новых элемента. Их назвали эйнштейнием и фермием, в честь ученых А. Эйнштейна и Э. Ферми, которым человечество в первую очередь обязано открытием путей овладения атомной энергией. Эйнштейну принадлежит закон эквивалентности массы и энергии, а Ферми построил первый атомный реактор. Теперь эйнштейний и фермий получают и в лабораториях.

    Элементы второй сотни.

    Еще не так давно едва ли кто мог поверить, что в таблицу Менделеева будет включен символ сотого элемента.

    Искусственный синтез элементов сделал свое дело: на короткое время фермий замкнул список известных химических элементов. Помыслы ученых были теперь устремлены вдаль, к элементам второй сотни.

    Но на пути оказался барьер, преодолеть который было нелегко.

    До сих пор физики синтезировали новые трансурановые элементы в основном двумя способами. Либо они обстреливали мишени из трансурановых элементов, уже синтезированных, α-частицами и дейтронами. Либо они бомбардировали уран или плутоний мощными потоками нейтронов. В результате образовывались очень богатые нейтронами изотопы этих элементов, которые после нескольких последовательных β-распадов превращались в изотопы новых трансуранов.

    Однако в середине 50-х годов обе эти возможности себя исчерпали. В ядерных реакциях удавалось получить невесомые количества эйнштейния и фермия, и потому из них нельзя было изготовить мишени. Нейтронный метод синтеза также не позволял продвинуться дальше фермия, так как изотопы этого элемента подвергались спонтанному делению с гораздо большей вероятностью, чем β-распаду. Понятно, что в таких условиях не имело смысла говорить о синтезе нового элемента.

    Поэтому очередной шаг физики сделали только тогда, когда им удалось накопить минимально необходимое для мишени количество элемента № 99. Это случилось в 1955 г.

    Одним из самых примечательных достижений, которым по справедливости может гордиться наука, следует назвать создание 101-го элемента.

    Этот элемент получил имя великого творца периодической системы химических элементов Дмитрия Ивановича Менделеева.

    Менделевий был получен следующим образом. На листочек тончайшей золотой фольги нанесли невидимое покрытие, состоящее приблизительно из одного миллиарда атомов эйнштейния. Альфа-частицы с очень большой энергией, пробивая золотую фольгу с обратной стороны, при соударении с атомами эйнштейния могли вступать в ядерную реакцию. В результате образовались атомы 101-го элемента. При таком соударении атомы менделевия вылетали с поверхности золотой фольги и собирались на другом, расположенном рядом тончайшем золотом листочке. Таким остроумным путем удалось выделить в чистом виде атомы 101-го элемента из сложной смеси эйнштейния и продуктов его распада. Невидимый налет смывался кислотой и подвергался радиохимическому исследованию.

    Поистине это было чудом. Исходным материалом для создания 101-го элемента в каждом отдельном опыте служил приблизительно один миллиард атомов эйнштейния. Это очень малозначительно меньше одной миллиардной доли миллиграмма, а получить эйнштейний в большем количестве было невозможно. Заранее подсчитали, что из миллиарда атомов эйнштейния при многочасовой бомбардировке α-частицами может прореагировать всего только один-единственный атом эйнштейния и, следовательно, может образоваться только один атом нового элемента. Нужно было не только суметь его обнаружить, но и сделать это так, чтобы выяснить по одному лишь атому химическую природу элемента.

    И это было сделано. Успех опыта превзошел расчеты и ожидания. Удалось заметить при одном эксперименте не один, а даже два атома нового элемента. Всего в первой серии опытов было получено семнадцать атомов менделевия. Этого оказалось достаточно, чтобы установить и факт образования нового элемента, и его место в периодической системе и определить его основные химические и радиоактивные свойства. Оказалось, что это α-активный элемент с периодом полураспада около получаса.

    Менделевий - первый элемент второй сотни - оказался своеобразной вехой на пути синтеза трансурановых элементов. До сих пор он остается последним из тех, которые были синтезированы старыми методами - облучением α-частицами. Теперь на сцену вышли более могучие снаряды - ускоренные многозарядные ионы различных элементов. Определение химической природы менделевия по считанному числу его атомов положило начало совершенно новой научной дисциплине - физикохимии единичных атомов.

    Символ элемента № 102 No - в периодической системе взят в скобки. И в скобках этих заключена долгая и сложная история этого элемента.

    О синтезе нобелия сообщила в 1957 г. интернациональная группа физиков, работавших в Нобелевском институте (Стокгольм). Впервые для синтеза нового элемента были применены тяжелые ускоренные ионы. В их качестве выступили ионы 13 С, поток которых направлялся на кюриевую мишень. Исследователи пришли к выводу, что им удалось синтезировать изотоп 102-го элемента. Ему дали название в честь основателя Нобелевского института изобретателя динамита Альфреда Нобеля.

    Прошел год, и опыты стокгольмских физиков были воспроизведены почти одновременно в Советском Союзе и США. И выяснилась удивительная вещь: результаты советских и американских ученых не имели ничего общего ни с работами Нобелевского института, ни между собой. Никому и нигде более не удалось повторить эксперименты, проведенные в Швеции. Такая ситуация породила довольно грустную шутку: "От нобелия остался один No" (No - в переводе с английского означает "нет"). Символ, поспешно помещенный в менделеевскую таблицу, не отражал действительного открытия элемента.

    Достоверный синтез элемента № 102 совершила группа физиков из Лаборатории ядерных реакций Объединенного института ядерных исследований. В 1962-1967 гг. советские ученые синтезировали несколько изотопов элемента № 102 и изучили его свойства. Подтверждение этих данных было получено в США. Однако символ No, не имея на то никакого права, до сих пор находится в 102-й клетке таблицы.

    Лоуренсий, элемент № 103 с символом Lw, названный так в честь изобретателя циклотрона Э. Лоуренса, был синтезирован в 1961 г. в США. Но здесь не меньшая заслуга и советских физиков. Они получили несколько новых изотопов лоуренсия и впервые изучили свойства этого элемента. Лоуренсий также появился на свет благодаря использованию тяжелых ионов. Мишень из калифорния облучалась ионами бора (или америциевая мишень - ионами кислорода).

    Элемент № 104 впервые был получен советскими физиками в 1964 г. К его синтезу приводила бомбардировка плутония ионами неона. 104-й элемент получил название курчатовия (символ Ки) в честь выдающегося советского физика Игоря Васильевича Курчатова.

    105-й и 106-й элементы также впервые удалось синтезировать советским ученым - в 1970 и в 1974 гг. Первый из них- продукт бомбардировки америция ионами неона- был назван нильсборием (Ns) в честь Нильса Бора. Синтез другого осуществлялся следующим образом: мишень из свинца бомбардировалась ионами хрома. Синтезы 105-го и 106-го элементов были осуществлены также и в США.

    Вы узнаете об этом в следующей главе, а настоящую мы завершим кратким рассказом о том,

    как изучают свойства элементов второй сотни.

    Фантастически трудная задача стоит перед экспериментаторами.

    Вот ее исходные условия: даны считанные количества (десятки, в лучшем случае сотни) атомов нового элемента, причем атомов весьма короткоживущих (периоды полураспада измеряются секундами, а то и долями секунды). Требуется доказать, что эти атомы - атомы действительно нового элемента (т. е. определить значение Z, а также величину массового числа А, чтобы знать, о каком изотопе нового трансурана идет речь), и изучить его важнейшие химические свойства.

    Считанные атомы, ничтожная продолжительность жизни...

    На помощь ученым приходят быстрота и высочайшая изобретательность. Но современный исследователь - специалист по синтезу новых элементов - должен не только уметь "подковать блоху". Он должен и в совершенстве владеть теорией.

    Проследим за теми основными шагами, посредством которых производят идентификацию нового элемента.

    Важнейшей визитной карточкой в первую очередь служат радиоактивные свойства- это может быть испускание α-частиц или спонтанное деление. Каждое α-активное ядро характеризуется специфическими величинами энергии α-частиц. Это обстоятельство позволяет либо опознать известные ядра, либо сделать вывод о том, что обнаружены новые. Например, изучая особенности α-частиц, ученые сумели получить достоверное доказательство синтеза 102-го и 103-го элементов.

    Энергичные осколочные ядра, образующиеся в результате деления, обнаружить значительно легче, чем α-частицы, вследствие гораздо большей энергии осколков. Для их регистрации употребляются пластинки, сделанные из стекла специального сорта. Осколки оставляют на поверхности пластинок чуть заметные следы. Затем пластинки проходят химическую обработку (травление), и их внимательно рассматривают под микроскопом. Стекло растворяется в плавиковой кислоте.

    Если стеклянную пластинку, обстрелянную осколками, поместить в раствор плавиковой кислоты, то в местах, куда попали осколки, стекло будет растворяться быстрее и там образуются лунки. Их размеры в сотни раз больше первоначального следа, оставленного осколком. Лунки можно наблюдать в микроскоп со слабым увеличением. Другие радиоактивные излучения наносят поверхности стекла меньшие повреждения и не просматриваются после травления.

    Вот что рассказывают авторы синтеза курчатовия о том, как происходил процесс опознания нового элемента: "Идет опыт. Сорок часов беспрерывно бомбардируют ядра неона плутониевую мишень. Сорок часов лента несет синтетические ядра к стеклянным пластинкам. Наконец циклотрон выключен. Стеклянные пластинки переданы на обработку в лабораторию. С нетерпением ждем результата. Проходит несколько часов. Под микроскопом обнаружено шесть треков. По их положению вычислили период полураспада. Он оказался в интервале времени от 0,1 до 0,5 с.

    А вот как те же исследователи рассказывают об оценке химической природы курчатовия и нильсбория. "Схема исследования химических свойств элемента № 104 такова. Атомы отдачи выходят из мишени в струю азота, тормозятся в ней, а затем хлорируются. Соединения 104-го элемента с хлором легко проникают через специальный фильтр, а все актиноиды не проходят. Если 104-й принадлежал бы к актиноидному ряду, то и он бы задержался фильтром. Однако исследования показали, что 104-й элемент - это химический аналог гафния. Это важнейший шаг к заполнению таблицы Менделеева новыми элементами.

    Затем в Дубне были изучены химические свойства 105-го элемента. Оказалось, что его хлориды адсорбируются на поверхности трубки, по которой они движутся от мишени при температуре более низкой, чем хлориды гафния, но более высокой, чем хлориды ниобия. Так могли бы вести себя только атомы элемента, близкого по химическим свойствам к танталу. Посмотрите на таблицу Менделеева: химический аналог тантала - элемент № 105! Поэтому опыты по адсорбции на поверхности атомов 105-го элемента подтвердили, что его свойства совпадают с предсказанными на основе периодической системы".

    d-ЭЛЕМЕНТЫ И ИХ СОЕДИНЕНИЯ

    1. Общая характеристика d-элементов

    К d-блоку относятся 32 элемента периодической системы. d-Элементы входят в 4-7-й большие периоды. У атомов IIIБ-группы появляется первый электрон на d-орбитали. В последующих Б-группах происходит заполнение d-подуровня до 10 электронов (отсюда название d-элементы). Строение внешних электронных оболочек атомов d-блока описывается общей формулой (n-1)dansb, где а = 1-10, b = 1-2.

    Особенностью элементов этих периодов является непропорционально медленное возрастание атомного радиуса с возрастанием числа электронов. Такое относительно медленное изменение радиусов объясняется так называемым лантаноидным сжатием вследствие проникновения ns-электронов под d-электронный слой. В результате наблюдается незначительное изменение атомных и химических свойств d-элементов с увеличением атомного номера. Сходство химических свойств проявляется в характерной особенности d-элементов образовывать комплексные соединения с разнообразными лигандами.

    Важным свойством d-элементов является переменная валентность и, соответственно, разнообразие степеней окисления. Эта особенность связана главным образом с незавершенностью предвнешнего d-электронного слоя (кроме элементов IБ- и IIБ-групп). Возможность существования d-элементов в разных степенях окисления определяет широкий диапазон окислительно-восстановительных свойств элементов. В низших степенях окисления d-элементы проявляют свойства металлов. С увеличением атомного номера в группах Б металлические свойства закономерно уменьшаются.

    В растворах кислородсодержащие анионы d-элементов с высшей степенью окисления проявляют кислотные и окислительные свойства. Катионные формы низших степеней окисления характеризуются основными и восстановительными свойствами.

    d-элементы в промежуточной степени окисления проявляют амфотерные свойства. Эти закономерности можно рассмотреть на примере соединений молибдена:

    С изменением свойств меняется окраска комплексов молибдена в различных степенях окисления (VI - II):

    В периоде с увеличением заряда ядра наблюдается уменьшение устойчивости соединений элементов в высших степенях окисления. Параллельно возрастают окислительно-восстановительные потенциалы этих соединений. Наибольшая окислительная способность наблюдается у феррат-ионов и перманганат-ионов. Следует отметить, что у d-элементов при нарастании относительной электроотрицательности усиливаются кислотные и неметаллические свойства.

    С увеличением устойчивости соединений при движении сверху вниз в Б-группах одновременно уменьшаются их окислительные свойства.

    Можно предположить, что в ходе биологической эволюции отбирались соединения элементов в промежуточных степенях окисления, которые характеризуются мягкими окислительно-восстановительными свойствами. Преимущества такого отбора очевидны: они способствуют плавному протеканию биохимических реакций. Уменьшение ОВ потенциала создает предпосылки для более тонкой «регулировки» биологических процессов, что обеспечивает выигрыш энергии. Функционирование организма становится менее энергоемким, а значит более экономичным по потреблению пищевых продуктов.

    С точки зрения эволюции для организма становится оправданным существование d-элементов в низших степенях окисления. Известно, что ионы Мn2+, Fе2+ , Со2+ при физиологических условиях не являются сильными восстановителями, а ионы Сu2+ и Fе2+ практически не проявляют в организме восстановительных свойств. Дополнительное снижение реакционной способности происходит при взаимодействии этих ионов с биоорганическими лигандами.

    Может показаться, что вышесказанному противоречит важная роль биоорганических комплексов молибдена(V) и (VI) в различных организмах. Однако и это согласуется с общей закономерностью. Несмотря на высшую степень окисления такие соединения проявляют слабые окислительные свойства.

    Необходимо отметить высокие комплексообразующие способности d-элементов, которые обычно значительно выше, чем у s- и p-элементов. Это прежде всего объясняется возможностями d-элементов быть как донорами, так и акцепторами пары электронов, образующих координационное соединение.

    В случае гидроксокомплекса хрома [Сr(ОН)6]3- ион металла является акцептором пары электронов. Гибридизация 3d24sp3-орбиталей хрома обеспечивает более устойчивое энергетическое состояние, чем при расположении электронов хрома на орбиталях гидроксогрупп.

    Соединение [СrСl4]2- образуется, наоборот, в результате того, что неподеленные d-электроны металла занимают свободные d-орбитали лигандов, поскольку в данном случае энергия этих орбиталей ниже.

    Свойства катиона Сr3+ показывают непостоянство координационных чисел d-элементов. Чаще всего, это четные числа от 4 до 8, реже встречаются числа 10 и 12. Необходимо отметить, что существуют не только одноядерные комплексы. Известны многочисленные ди-, три- и тетра-ядерные координационные соединения d-элементов.

    Примером может служить биядерный комплекс кобальта [Со2(NН3)102)](NО3)5, который может служить моделью переносчика кислорода.

    Более 1/3 всех микроэлементов организма составляют d-элементы. В организмах они существуют в виде комплексных соединений или гидратированных ионов со среднем временем обмена гидратной оболочки от 10-1 до 10-10 с. Поэтому можно утверждать, что «свободные» ионы металлов в организме не существуют: это либо их гидраты, либо продукты гидролиза.

    В биохимических реакциях d-элементы наиболее часто проявляют себя как металлы-комплексообразователи. Лигандами при этом выступают биологически активные вещества, как правило, органического характера или анионы неорганических кислот.

    Белковые молекулы образуют с d-элементами бионеорганические комплексы - кластеры или биокластеры. Ион металла (металл-комплексо-образователь) располагается внутри полости кластера, взаимодействуя с электроотрицательными атомами связывающих групп белка: гидроксильных (-ОН), сульфгидрильных (-SН), карбоксильных (-СООН) и аминогрупп белков (Н2N-). Для проникновения иона металла в полость кластера необходимо, чтобы диаметр иона был соизмерим с размером полости. Таким образом, природа регулирует формирование биокластеров с ионами d-элементов определенных размеров.

    Наиболее известные металлоферменты: карбоангидраза, ксантиноксидаза, сукцинатдегидрогеназа, цитохромы, рубредоксин. Они представляют собой биокластеры, полости которых образуют центры связывания субстратов с ионами металла.

    Биокластеры (белковые комплексы) выполняют различные функции.

    Транспортные белковые комплексы доставляют к органам кислород и необходимые элементы. Координация металла идет через кислород карбоксильных групп и азот аминогрупп белка. При этом образуется устойчивое хелатное соединение.

    В качестве координирующего металла выступают d-элементы (кобальт, никель, железо). Пример железосодержащего транспортного белкового комплекса - трансферрин.

    Другие биокластеры могут выполнять аккумуляторную (накопительную) роль - это железосодержащие белки: гемоглобин, миоглобин, ферритин. Они будут рассмотрены при описании свойства группы VIIIБ.

    Элементы Zn, Fе, Со, Мо, Сu - жизненно необходимы, входят в состав металлоферментов. Они катализируют реакции, которые можно разделить на три группы:

    1. Кислотно-основные взаимодействия. Участвует ион цинка, входящий в состав фермента карбоангидразы, катализирующего обратимую гидратацию СО2 в биосистемах.
    2. Окислительно-восстановительные взаимодействия. Участвуют ионы Fе, Со, Сr, Мо. Железо входит в состав цито-хрома, в ходе процесса происходит перенос электрона:

    3+ → Fе2+ + е-

    3.Перенос кислорода. Участвуют Fе, Сu. Железо входит в состав гемоглобина, медь - в состав гемоцианина. Предполагается, что эти элементы связываются с кислородом, но не окисляются им.

    Соединения d-элементов избирательно поглощают свет с разными длинами волн. Это приводит к появлению окраски. Квантовая теория объясняет избирательность поглощения расщеплением d-подуровней ионов металлов под действием поля лигандов.

    Хорошо известны следующие цветные реакции на d-элементы:

    Мn2+ + S2- = МnS↓ (осадок телесного цвета)

    Нg2+ + 2I- = НgI2 ↓(желтый или красный осадок)

    К2Сr2О7 + Н24 (конц.) = К24 + Н2О + 2СrО3

    (кристаллы оранжевого цвета)

    Приведенные выше реакции используются в аналитической химии для качественного определения соответствующих ионов. Уравнение реакции с дихроматом показывает, что происходит при приготовлении «хромовой смеси» для мытья химической посуды. Эта смесь необходима для удаления как неорганических, так и органических отложений с поверхности химических склянок. Например, жировых загрязнений, которые всегда остаются на стекле после прикосновения пальцев.

    Необходимо обратить внимание на то, что d-элементы в организме обеспечивают запуск большинства биохимических процессов, обеспечивающих нормальную жизнедеятельность.

    Общая характеристика d-элементов VIБ-группы

    VIБ-группу составляют элементы (переходные металлы) - хром, молибден и вольфрам. Эти редкие металлы находятся в природе в небольшом количестве. Однако благодаря целому ряду полезных химических и физических свойств, широко применяются не только в машиностроении и химической технологии, но и в медицинской практике (сплав Сr-Со-Мо используется в хирургии и стоматологии, молибден и его сплавы применяются как детали рентгеновских трубок, из вольфрама изготовляют аноды рентгеновских трубок, сплавы вольфрама - основа экранов для зашиты от γ-лучей).

    Конфигурация валентных электронов Сг и Мо - (n-1)d5ns1, W - 5d46s2. Сумма валентных электронов хрома, молибдена, вольфрама равна 6, что и определяет их положение в VIБ-группе. У Сr и Мо последний электронный слой занимают 13 электронов, у W - 12. Как у большинства d-элементов этот слой неустойчив. Поэтому валентность хрома, молибдена и вольфрама непостоянна. По этой же причине соединения металлов группы VIБ характеризуются набором степеней окисления от +2 до +6.

    В группе d-элементов проявляется общая тенденция: с увеличением порядкового номера увеличивается устойчивость соединений с высшей степенью окисления. Самым сильным окислителем в состоянии Э6+ является хром. «Пограничный» Мо6+ проявляет слабые окислительные свойства. Молибде-нат-ион МоО42- восстанавливается лишь до Мо6О17 («молибденовая синь»), где часть атомов молибдена имеет степень окисления +5. Эта реакция используется в аналитической химии для фотометрических определений.

    В низших валентных состояниях, следуя все той же тенденции, более сильные восстановительные свойства проявляет Сг2+. У ионов Мо2+ и W2+ увеличение энергии ионизации приводит к уменьшению восстановительных и металлических свойств.

    Комплексные соединения данной группы элементов чаще всего имеют координационное число 6 и гибридизацию типа sр3d2, которая в пространстве описывается октаэдром.

    Характерной особенностью соединений этой группы является склонность к полимеризации (конденсации) кислородных форм элементов VI группы. Это свойство усиливается при движении по группе сверху вниз. При этом образуются соединения типа М6О2412-, составленные из октаэдров МоO4 и WO4. Эти октаэдры образуют полимерные кристаллы. У оксида хрома (VI) способность к полимеризации проявляется, но слабо. Поэтому у оксидов молибдена и вольфрама степень полимеризации выше.

    По строению электронной оболочки атомов с незаполненной d-орбиталью, совокупности физических и химических свойств, по склонности к образованию электроположительных ионов и координационных соединений элементы VI группы относятся к переходным металлам.

    Химические свойства соединений хрома. Большинство соединений хрома имеет яркую окраску самых разных цветов. Название происходит от греч. хромоc - цвет, окраска.

    Соединения трехвалентного хрома (в отличие от соединений молибдена, а для вольфрама степень окисления +3 вообще не характерна) химически инертны.

    В природе хром находится в трехвалентном (шпинель - двойной оксид МnСrO4 - магнохромит) и шестивалентном состоянии (РbСrO4 - крокоит). Образует оксиды основного, амфотерного и кислотного характера.

    Оксид хрома (II) СrО - кристаллы красного (красно-коричневого) цвета или черный пирофорный порошок, нерастворимый в воде. Соответствует гидроксиду Сr(ОН)2. Гидроксид желтого (влажный) или коричневого цвета. При прокаливании на воздухе превращается в Сr2О3 (зеленого цвета):

    Сr(ОН)2 + 0,5О2 = Сr2O3 + 2Н2О

    Катион Сr2+ - бесцветен, его безводные соли белого, а водные - синего цвета. Соли двухвалентного хрома являются энергичными восстановителями. Водный раствор хлорида хрома (II) используется в газовом анализе для количественного поглощения кислорода:

    2СrСl2 + 2НgО + 3Н2O + 0,5О2 = 2НgСl2 + 2Сr(ОН)3

    (грязно-зеленый осадок)

    Гидроксид хрома (III) обладает амфотерными свойствами. Легко переходит в коллоидное состояние. Растворяясь в кислотах и щелочах, образует аква- или гидроксокомплексы:

    Сr(ОН)3 + 3Н3О+ = [Сr(Н2О)6]3+ (сине-фиолетовый раствор)

    Сr(ОН)3 + 3ОН- = [Сr(ОН)6]3- (изумрудно-зеленый раствор)

    Соединения трехвалентного хрома, как и двухвалентного, проявляют восстановительные свойства:

    Сr2(SO4)з+КСlО3 + 10КОН = 2К2СrO4 + 3К24 + КСl + 5Н2О

    Соединения хрома (VI), как правило, кислородсодержащие комплексы хрома. Оксид шестивалентного хрома соответствует хромовым кислотам.

    Хромовые кислоты образуются при растворении в воде СrО3. Это сильно токсичные растворы желтого, оранжевого и красного цвета, обладающие окислительными свойствами. СrО3 образует полихромовые кислоты состава Н2СrnО(3n+1): nCrО3 + Н2О → Н2СrnО(3n+1). Таких соединений может быть несколько: Н2СrО4, Н2Сr7, Н2