Войти
В помощь школьнику
  • Кристаллические решетки в химии Ионная кристаллическая решетка
  • Отличительные черты личности
  • Аномальные зоны тверской
  • Про легендарную разведывательную "Бешеную роту", позывной "Гюрза" История роты гюрзы
  • Общая характеристика кишечнополостных, образ жизни, строение, роль в природе
  • Современные инновационные технологии в образовании
  • Кристаллические решетки. Кристаллические решетки в химии Ионная кристаллическая решетка

    Кристаллические решетки. Кристаллические решетки в химии Ионная кристаллическая решетка

    Вещество, как вам известно, может существовать в трёх агрегатных состояниях: газообразном, жидком и твёрдом (рис. 70). Например, кислород, который при обычных условиях представляет собой газ, при температуре -194 °С превращается в жидкость голубого цвета, а при температуре -218,8 °С затвердевает в снегообразную массу, состоящую из кристаллов синего цвета.

    Рис. 70.
    Агрегатные состояния воды

    Твёрдые вещества делят на кристаллические и аморфные.

    Аморфные вещества не имеют чёткой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. К аморфным веществам относится большинство пластмасс (например, полиэтилен), воск, шоколад, пластилин, различные смолы и жевательные резинки (рис. 71).

    Рис. 71.
    Аморфные вещества и материалы

    Кристаллические вещества характеризуются правильным расположением составляющих их частиц в строго определённых точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки.

    В узлах воображаемой кристаллической решётки могут находиться одноатомные ионы, атомы, молекулы. Эти частицы совершают колебательные движения. С повышением температуры размах этих колебаний возрастает, что приводит, как правило, к тепловому расширению тел.

    В зависимости от типа частиц, расположенных в узлах кристаллической решётки, и характера связи между ними различают четыре типа кристаллических решёток: ионные, атомные, молекулярные и металлические (табл. 6).

    Таблица 6
    Положение элементов в Периодической системе Д. И. Менделеева и типы кристаллических решёток их простых веществ

    Простые вещества, образованные элементами, не представленными в таблице, имеют металлическую решётку.

    Ионными называют кристаллические решётки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na + , Cl - , так и сложные , ОН - . Следовательно, ионные кристаллические решётки имеют соли, основания (щёлочи), некоторые оксиды. Например, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Сl - , образующих решётку в форме куба (рис. 72). Связи между ионами в таком кристалле очень прочны. Поэтому вещества с ионной решёткой обладают сравнительно высокой твёрдостью и прочностью, они тугоплавки и нелетучи.

    Рис. 72.
    Ионная кристаллическая решётка (хлорид натрия)

    Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы. В таких решётках атомы соединены между собой очень прочными ковалентными связями.

    Рис. 73.
    Атомная кристаллическая решётка (алмаз)

    Такой тип кристаллической решётки имеет алмаз (рис. 73) - одно из аллотропных видоизменений углерода. Огранённые и отшлифованные алмазы называют бриллиантами. Их широко применяют в ювелирном деле (рис. 74).

    Рис. 74.
    Две императорские короны с алмазами:
    а - корона Британской империи; б - Большая императорская корона Российской империи

    К веществам с атомной кристаллической решёткой относятся кристаллические бор, кремний и германий, а также сложные вещества, например такие, как кремнезем, кварц, песок, горный хрусталь, в состав которых входит оксид кремния (IV) SiO 2 (рис. 75).

    Рис. 75.
    Атомная кристаллическая решётка (оксид кремния (IV))

    Большинство веществ с атомной кристаллической решёткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С, у кремния - 1415 °С, у кремнезёма - 1728 °С), они прочны и тверды, практически нерастворимы.

    Молекулярными называют кристаллические решётки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и ковалентными полярными (хлороводород НСl, вода Н 2 0), и ковалентными неполярными (азот N 2 , озон 0 3). Несмотря на то что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярными кристаллическими решётками имеют малую твёрдость, низкие температуры плавления, летучи.

    Примерами веществ с молекулярными кристаллическими решётками являются твёрдая вода - лёд, твёрдый оксид углерода (IV) С) 2 - «сухой лёд» (рис. 76), твёрдые хлороводород НСl и сероводород H 2 S, твёрдые простые вещества, образованные одно- (благородные газы: гелий, неон, аргон, криптон), двух- (водород Н 2 , кислород O 2 , хлор Сl 2 , азот N 2 , иод 1 2), трёх- (озон O 3), четырёх- (белый фосфор Р 4), восьмиатомными (сера S 7) молекулами. Большинство твёрдых органических соединений имеют молекулярные кристаллические решётки (нафталин, глюкоза, сахар).

    Рис. 76.
    Молекулярная кристаллическая решётка (углекислый газ)

    Вещества с металлической связью имеют металлические кристаллические решётки (рис. 77). В узлах таких решёток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны в общее пользование). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, металлический блеск.

    Рис. 77.
    Металлическая кристаллическая решётка (железо)

    Лабораторный опыт № 13
    Ознакомление с коллекцией веществ с разным типом кристаллической решётки. Изготовление моделей кристаллических решёток

      Ознакомьтесь с коллекцией выданных вам образцов веществ. Запишите их формулы, охарактеризуйте физические свойства и на их основе определите тип кристаллической решётки.

      Соберите модель одной из кристаллических решёток.

    Для веществ, имеющих молекулярное строение, справедлив открытый французским химиком Ж. Л. Прустом (1799-1803) закон постоянства состава. В настоящее время этот закон формулируют так:

    Закон Пруста - один из основных законов химии. Однако для веществ немолекулярного строения, например ионного, этот закон не всегда справедлив.

    Ключевые слова и словосочетания

    1. Твёрдое, жидкое и газообразное состояния вещества.
    2. Твёрдые вещества: аморфные и кристаллические.
    3. Кристаллические решётки: ионные, атомные, молекулярные и металлические.
    4. Физические свойства веществ с различными типами кристаллических решёток.
    5. Закон постоянства состава.

    Работа с компьютером

    1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
    2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

    Вопросы и задания

    1. В каком агрегатном состоянии будет находиться кислород при -205 °С?
    2. Вспомните произведение А. Беляева «Продавец воздуха» и охарактеризуйте свойства твёрдого кислорода, используя его описание, приведённое в книге.
    3. К какому типу веществ (кристаллические или аморфные) относятся пластмассы? Какие свойства пластмасс лежат в основе их промышленного применения?
    4. К какому типу относится кристаллическая решетка алмаза? Перечислите характерные для алмаза физические свойства.
    5. К какому типу относится кристаллическая решетка иода? Перечислите характерные для иода физические свойства.
    6. Почему температура плавления металлов изменяется в очень широких пределах? Для подготовки ответа на этот вопрос используйте дополнительную литературу.
    7. Почему изделие из кремния при ударе раскалывается на кусочки, а изделие из свинца только расплющивается? В каком из указанных случаев происходит разрушение химической связи, а в каком - нет? Почему?

    Из 14 известных на сегодняшний день форм твердой воды в природе мы встречаем только одну — лед. Остальные образуются в экстремальных условиях и для наблюдений вне специальных лабораторий недоступны. Самое интригующее свойство льда — это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки фирна на снежном поле или же гигантских ледниковых масс.

    В небольшом японском городе Кага, расположенном на западном берегу острова Хонсю, есть необычный музей. Снега и льда. Основал его Укихиро Накайя — первый человек, который научился выращивать в лаборатории искусственные снежинки, такие же красивые, как и те, что падают с неба. В этом музее посетителей со всех сторон окружают правильные шестиугольники, потому что именно такая — гексагональная — симметрия свойственна кристаллам обычного льда (кстати, греческое слово kristallos, собственно, и означает «лед»). Она определяет многие уникальные его свойства и заставляет снежинки, при всем бесконечном их разнообразии, расти в форме звездочек с шестью, реже — тремя или двенадцатью лучами, но никогда — с четырьмя или пятью.

    Молекулы в ажуре

    Разгадка структуры твердой воды кроется в строении ее молекулы. Н2О можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием). В центре находится кислород, в двух вершинах — по водороду, точнее — протону, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, отчего их называют неподеленными.

    При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, которые не позволяют при замерзании создавать плотную структуру. Этот невидимый каркас из водородных связей располагает молекулы в виде ажурной сетки с полыми каналами. Стоит лед нагреть, как кружево рушится: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, — вот почему вода тяжелее льда.

    Лед, который образуется при атмосферном давлении и плавится при 0°С, — самое привычное, но все еще не до конца понятное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода выстроены упорядоченно, образуя правильные шестиугольники, а вот атомы водорода занимают самые разные положения вдоль связей. Такое поведение атомов вообще-то нетипично — как правило, в твердом веществе все подчиняются одному закону: либо все атомы расположены упорядоченно, и тогда это — кристалл, либо случайно, и тогда это — аморфное вещество.

    Лед трудно расплавить, как бы ни странно это звучало. Не будь водородных связей, сцепляющих молекулы воды, он плавился бы при –90°С. При этом, замерзая, вода не уменьшается в объеме, как это происходит с большинством известных веществ, а увеличивается — за счет образования ажурной структуры льда.

    К «странностям» льда относят и генерацию электромагнитного излучения его растущими кристаллами. Давно известно, что большинство растворенных в воде примесей не передается льду, когда он начинает расти, проще говоря, вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. Примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом получается ледовая структура.

    Неправильный лед

    В твердом состоянии вода насчитывает, по последним данным, 14 структурных модификаций. Есть среди них кристаллические (их большинство), есть аморфные, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, образуются в условиях экзотических — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Например, при температуре ниже –110°С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110°, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

    Две последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предсказание 40-летней давности о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень велика, и собраться вместе молекулам сверхчистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Помог катализатор — соляная кислота, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но их можно поискать на замерзших спутниках других планет.

    Комиссия решила так

    Снежинка — это монокристалл льда, вариация на тему гексагонального кристалла, но выросшего быстро, в неравновесных условиях. Над тайной их красоты и бесконечного разнообразия не одно столетие бьются самые пытливые умы. Астроном Иоганн Кеплер в 1611 году написал целый трактат «О шестиугольных снежинках». В 1665 году Роберт Гук в огромном томе зарисовок всего, что он увидел с помощью микроскопа, опубликовал множество рисунков снежинок самой разной формы. Первую удачную фотографию снежинки под микроскопом сделал в 1885 году американский фермер Уилсон Бентли. С тех пор он уже не мог остановиться. До конца жизни, сорок с лишним лет, Бентли фотографировал их. Более пяти тысяч кристаллов, и ни одного одинакового.

    Самые знаменитые последователи дела Бентли — это уже упомянутый Укихиро Накайя и американский физик Кеннет Либбрехт . Накайя впервые предположил, что величина и форма снежинок зависят от температуры воздуха и содержания в нем влаги, и блистательно подтвердил эту гипотезу экспериментально, выращивая в лаборатории кристаллы льда разной формы. А Либбрехт у себя в и вовсе стал выращивать снежинки на заказ — заранее заданной формы.

    Жизнь снежинки начинается с того, что в облаке водяного пара при понижении температуры образуются кристаллические зародыши льда. Центром кристаллизации могут быть пылинки, любые твердые частицы или даже ионы, но в любом случае эти льдинки размером меньше десятой доли миллиметра уже имеют гексагональную кристаллическую решетку.

    Водяной пар, конденсируясь на поверхности этих зародышей, образует сначала крошечную гексагональную призму, из шести углов которой начинают расти совершенно одинаковые ледяные иголочки — боковые отростки. Одинаковые просто потому, что температура и влажность вокруг зародыша тоже одинаковые. На них в свою очередь вырастают, как на дереве, боковые отростки — веточки. Подобные кристаллы так и называют дендритами, то есть похожими на дерево.

    Передвигаясь вверх и вниз в облаке, снежинка попадает в условия с разной температурой и концентрацией водяного пара. Ее форма меняется, до последнего подчиняясь законам гексагональной симметрии. Так снежинки становятся разными. Хотя теоретически в одном облаке на одной высоте они могут «зародиться» одинаковыми. Но путь до земли у каждой свой, довольно долгий — в среднем снежинка падает со скоростью 0,9 км в час. А значит, у каждой — своя история и своя окончательная форма. Образующий снежинку лед прозрачен, но когда их много, солнечный свет, отражаясь и рассеиваясь на многочисленных гранях, создает у нас впечатление белой непрозрачной массы — мы называем ее снегом.

    Чтобы не путаться с многообразием снежинок, Международная комиссия по снегу и льду приняла в 1951 году довольно простую классификацию кристаллов льда: пластинки, звездчатые кристаллы, столбцы или колонны, иглы, пространственные дендриты, столбцы с наконечниками и неправильные формы. И еще три вида обледенелых осадков: мелкая снежная крупка, ледяная крупка и град.

    Тем же законам подчиняется и рост инея, изморози и узоров на стеклах. Эти явления, как и снежинки, образуются при конденсации, молекула за молекулой — на земле, траве, деревьях. Узоры на окне появляются в мороз, когда на поверхности стекла конденсируется влага теплого комнатного воздуха. А вот градины получаются при застывании капель воды или когда в насыщенных водяным паром облаках лед плотными слоями намерзает на зародыши снежинок. На градины могут намерзать другие, уже сформировавшиеся снежинки, сплавляясь с ними, благодаря чему градины принимают самые причудливые формы.

    Нам на Земле довольно и одной твердой модификации воды — обычного льда. Он буквально пронизывает все области обитания или пребывания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Горные ледники , ледяные покровы акваторий, вечная мерзлота, да и просто сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. А лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.

    Ольга Максименко, кандидат химических наук

    Как мы знаем, все материальные вещества могут пребывать в трех базовых состояниях: жидком, твердом, и газообразном. Правда есть еще состояние плазмы, которое ученые считают ни много ни мало четвертым состоянием вещества, но наша статья не о плазме. Твердое состояние вещества потому твердое, так как имеет особую кристаллическую структуру, частицы которой находятся в определенном и четко заданном порядке, создавая, таким образом, кристаллическую решетку. Строение кристаллической решетки состоит из повторяющихся одинаковых элементарных ячеек: атомов, молекул, ионов, других элементарных частиц, связанных между собой различными узлами.

    Виды кристаллических решеток

    В зависимости от частиц кристаллической решетки существует четырнадцать типов оной, приведем наиболее популярные из них:

    • Ионная кристаллическая решетка.
    • Атомная кристаллическая решетка.
    • Молекулярная кристаллическая решетка.
    • кристаллическая решетка.

    Ионная кристаллическая решетка

    Главной особенностью строения кристаллической решетки ионов являются противоположные электрические заряды, собственно, ионов, вследствие чего образуется электромагнитное поле, определяющее свойства веществ, имеющих ионную кристаллическую решетку. А это тугоплавкость, твердость, плотность и возможность проводить электрический ток. Характерным примером ионной кристаллической решетки может быть поваренная соль.

    Атомная кристаллическая решетка

    Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные . Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой . Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

    Молекулярная кристаллическая решетка

    Молекулярный тип кристаллической решетки характеризуется наличием устойчивых и плотноупакованных молекул. Они располагаются в узлах кристаллической решетки. В этих узлах они удерживаются такими себе вандервальсовыми силами, которые в десять раз слабее сил ионного взаимодействия. Ярким примером молекулярной кристаллической решетки является лед – твердое вещество, имеющее однако свойство переходить в жидкое – связи между молекулами кристаллической решетки совсем слабенькие.

    Металлическая кристаллическая решетка

    Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

    Кристаллические решетки, видео

    И в завершение подробное видео пояснения о свойствах кристаллических решеток.

    Твердые вещества, как правило, имеют кристаллическое строение. Оно характеризуется правильным расположением частиц в строго определенных точках пространства. При мысленном соединении этих точек пересекающимися прямыми линиями образуется пространственный каркас, который называют кристаллической решеткой .

    Точки, в которых размещены частицы, называются узлами кристаллической решетки . В узлах воображаемой решетки могут находиться ионы, атомы или молекулы. Они совершают колебательные движения. С повышением температуры амплитуда колебаний возрастает, что проявляется в тепловом расширении тел.

    В зависимости от вида частиц и характера связи между ними различают четыре типа кристаллических решеток: ионные , атомные , молекулярные и металлические .

    Кристаллические решетки, состоящие из ионов, называются ионными . Их образуют вещества с ионной связью. Примером может служит кристалл хлорида натрия, в котором, как уже отмечалось, каждый ион натрия окружен шестью хлорид-ионами, а каждый хлорид-ион — шестью ионами натрия. Такому расположению соответствует наиболее плотная упаковка, если ионы представить в виде шаров, размещенных в кристалле. Очень часто кристаллические решетки изображают, как показано на рис , где указывается только взаимное расположение частиц, но не их размеры.

    Число ближайших соседних частиц, вплотную примыкающих к данной частице в кристалле или в отдельной молекуле, называется координационным числом .

    В решетке хлорида натрия координационные числа обоих ионов равны 6. Итак, в кристалле хлорида натрия нельзя выделить отдельные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Na + и Cl — , Na n Cl n , где n — большое число. Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи.

    Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и уменьшению прочности связи между ними. Поэтому расплавы их проводят электрический ток. Ионные соединения, как правило, легко растворяются в жидкостях, состоящих из полярных молекул, например в воде.

    Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными . Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз — одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе 4 . В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием.

    Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными .

    Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, их растворы почти не проводят электрический ток. Число неорганических веществ с молекулярной решеткой невелико.

    Примерами их являются лед, твердый оксид углерода (IV) ("сухой лед"), твердые галогеноводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (F 2 , Сl 2 , Br 2 , I 2 , Н 2 , О 2 , N 2), трех- (О 3), четырех- (Р 4), восьми- (S 8) атомными молекулами. Молекулярная кристаллическая решетка йода показана на рис . Большинство кристаллических органических соединений имеют молекулярную решетку.

    Если в узлах кристаллической решетки находятся неполярные молекулы какого-то вещества (вроде иода I 2 , кислорода О 2 или азота N 2 ), то они не испытывают друг к другу никаких электрических "симпатий". Другими словами, их молекулы не должны притягиваться за счет электростатических сил. И все-таки что-то их удерживает рядом. Что именно?

    Оказывается, в твердом состоянии эти молекулы подходят настолько близко друг к другу, что в их электронных облаках начинаются мгновенные (правда, очень слабые) смещения - сгущения и разрежения электронных облаков. Вместо неполярных частиц возникают "мгновенные диполи", которые уже смогут притягиваться друг к другу электростатически. Однако это притяжение очень слабое. Поэтому кристаллические решетки неполярных веществ непрочные и существуют только при очень низкой температуре, при "космическом" холоде.

    Астрономы действительно обнаружили небесные тела - кометы, астероиды, даже целые планеты, состоящие из замерзшего азота , кислорода и других веществ, которые в обычных земных условиях существуют в виде газов и становятся твердыми в межпланетном пространства.

    Многие простые и сложные вещества с молекулярной кристаллической решеткой хорошо всем известны. Это, например, кристаллический иод I 2 :
    Вот как построена кристаллическая решетка иода : она состоит из молекул иода (в каждой из них - два атома иода).
    И эти молекулы довольно слабо связаны между собой. Вот почему кристаллический иод такой летучий и уже при самом легком нагревании испаряется, превращаясь в газообразный иод - пар красивого фиолетового цвета.

    У каких широко распространенных веществ молекулярная кристаллическая решетка ?

    • Кристаллическая вода (лед) состоит из полярных молекул воды H 2 O.
    • Кристаллы "сухого льда", которым охлаждают мороженое, - это тоже молекулярные кристаллы углекислого газа CO 2 .
    • Еще один пример - сахар, который образует кристаллы из молекул сахарозы .

    Когда в узлах кристаллической решетки находятся молекулы вещества, связи между ними не очень-то крепкие, даже если эти молекулы - полярные.
    Поэтому для того, чтобы расплавить такие кристаллы или испарить вещества с молекулярной кристаллической структурой, не требуется нагревать их до красного каления.
    Уже при 0 °С кристаллическая структура льда разрушается, и получается вода . А "сухой лед" при обычном давлении не плавится, а сразу переходит в газообразный диоксид углерода - возгоняется.


    Другое дело - вещества с атомной кристаллической решеткой, где каждый атом связан со своими соседями очень прочными ковалентными связями, а весь кристалл в целом при желании можно считать огромной молекулой.

    Для примера можно рассмотреть кристалл алмаза, который состоит из атомов углерода .

    Атом углерода С , который содержит два неспаренных р -электрона, превращается в атом углерода С* , где все четыре электрона внешнего валентного уровня расположены на орбиталях поодиночке и способны образовывать химические связи . Химики называют такой атом "возбужденным ".
    В этом случае химических связей оказывается целых четыре, и все очень прочные . Недаром алмаз - самое твердое вещество в природе и с незапамятных времен считается царем всех самоцветов и драгоценных камней. Да и само его название означает по-гречески "несокрушимый".
    Из ограненных кристаллов алмаза получаются бриллианты, которыми украшают дорогие ювелирные изделия

    Самые красивые из найденных людьми алмазов имеют свою, порой трагическую, историю. Читайте >>>

    Но алмаз идет не только на украшения. Его кристаллы используются в инструменте для обработки самых твердых материалов, бурения горных пород, резки и огранки стекла и хрусталя.

    Кристаллическая решетка алмаза (слева) и графита (справа)

    Графит по составу тот же углерод , но структура кристаллической решетки у него не такая, как у алмаза. В графите атомы углерода расположены слоями, внутри которых соединение атомов углерода похоже на пчелиные соты. Эти слои связаны между собой гораздо слабее, чем атомы углерода в каждом слое. Поэтому графит легко расслаивается на чешуйки, и им можно писать. Применяется он для изготовления карандашей, а также в качестве сухой смазки, пригодной для деталей машин, работающих при высокой температуре. Кроме того, графит хорошо проводит электрический ток, и из него делают электроды.

    Можно ли недорогой графит превратить в драгоценный алмаз ? Можно, но для этого потребуется немыслимо большое давление (несколько тысяч атмосфер) и высокая температура (полторы тысячи градусов).
    Гораздо проще "испортить" алмаз : надо просто нагреть его без доступа воздуха до 1500 °С, и кристаллическая структура алмаза превратится в менее упорядоченную структуру графита .