Войти
В помощь школьнику
  • Учитель татьяна писаревская
  • Синтетические и искусственные высокомолекулярные соединения Искусственное соединение элементов содержания и формы
  • Кристаллические решетки в химии Ионная кристаллическая решетка
  • Отличительные черты личности
  • Аномальные зоны тверской
  • Про легендарную разведывательную "Бешеную роту", позывной "Гюрза" История роты гюрзы
  • Формулы и названия кислот. Основные формулы кислот. Порядок выполнения работы

    Формулы и названия кислот. Основные формулы кислот. Порядок выполнения работы

    Кислотами называются сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.

    По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H 2 SO 4 серная кислота, H 2 SO 3 сернистая кислота, HNO 3 азотная кислота, H 3 PO 4 фосфорная кислота, H 2 CO 3 угольная кислота, H 2 SiO 3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H 2 S сероводородная кислота).

    В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н). Например, азотная кислота HNO 3 одноосновная, так как в молекуле её один атом водорода, серная кислота H 2 SO 4 двухосновная и т.д.

    Неорганических соединений, содержащих четыре атома водорода, способных замещаться на металл, очень мало.

    Часть молекулы кислоты без водорода называется кислотным остатком.

    Кислотные остатки могут состоять из одного атома (-Cl, -Br, -I) – это простые кислотные остатки, а могут – из группы атомов (-SO 3, -PO 4, -SiO 3) – это сложные остатки.

    В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:

    H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl

    Слово ангидрид означает безводный, то есть кислота без воды. Например,

    H 2 SO 4 – H 2 O → SO 3 . Бескислородные кислоты ангидридов не имеют.

    Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H 2 SO 4 – серная; H 2 SO 3 – угольная; H 2 SiO 3 – кремниевая и т.д.

    Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO 3 – азотная, HNO 2 – азотистая.

    Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:

    H 2 + Cl 2 → 2 HCl;

    H 2 + S → H 2 S.

    Растворы полученных газообразных веществ HCl и H 2 S и являются кислотами.

    При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.

    Химические свойства кислот

    Растворыв кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются в воде. Специальные вещества – индикаторы позволяют определить присутствие кислоты.

    Индикаторы – это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами. В нейтральных растворах - они имеют одну окраску, в растворах оснований – другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус – тоже в красный цвет.

    Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):

    H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.

    Взаимодействуют с основанными оксидами с образованием воды и соли (реакция нейтрализации). Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:

    H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.

    Взаимодействуют с металлами. Для взаимодействия кислот с металлами должны выполнятся некоторые условия:

    1. металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;

    2. кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H +).

    При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):

    Zn + 2HCl → ZnCl 2 + H 2 ;

    Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.

    Остались вопросы? Хотите знать больше о кислотах?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Называются вещества, диссоциирующие в растворах с образованием ионов водорода.

    Кислоты классифицируются по их силе, по основности и по наличию или отсутствию кислорода в составе кислоты.

    По силе кислоты делятся на сильные и слабые. Важнейшие сильные кислоты - азотная HNO 3 , серная H 2 SO 4 , и соляная HCl .

    По наличию кислорода различают кислородсодержащие кислоты (HNO 3 , H 3 PO 4 и т.п.) и бескислородные кислоты (HCl , H 2 S , HCN и т.п.).

    По основности , т.е. по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли, кислоты подразделяются на одноосновные (например, HNO 3 , HCl ), двухосновные (H 2 S , H 2 SO 4 ), трехосновные (H 3 PO 4 ) и т. д.

    Названия бескислородных кислот производятся от названия неметалла с прибавлением окончания -водородная: HCl - хлороводородная кислота, H 2 S е - селеноводородная кислота, HCN - циановодородная кислота.

    Названия кислородсодержащих кислот также образуются от русского названия соответствующего элемента с добавлением слова «кислота». При этом название кислоты, в которой элемент находится в высшей степени окисления , оканчивается на «ная» или «овая», например, H 2 SO 4 - серная кислота, HClO 4 - хлорная кислота, H 3 AsO 4 - мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: «оватая» (HClO 3 - хлорноватая кислота), «истая» (HClO 2 - хлористая кислота), «оватистая» (H О Cl - хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающее низшей степени окисления элемента, получает окончание «истая» (HNO 3 - азотная кислота, HNO 2 - азотистая кислота).

    Таблица - Важнейшие кислоты и их соли

    Кислота

    Названия соответствующих нормальных солей

    Название

    Формула

    Азотная

    HNO 3

    Нитраты

    Азотистая

    HNO 2

    Нитриты

    Борная (ортоборная)

    H 3 BO 3

    Бораты (ортобораты)

    Бромоводородная

    Бромиды

    Иодоводородная

    Иодиды

    Кремниевая

    H 2 SiO 3

    Силикаты

    Марганцовая

    HMnO 4

    Перманганаты

    Метафосфорная

    HPO 3

    Метафосфаты

    Мышьяковая

    H 3 AsO 4

    Арсенаты

    Мышьяковистая

    H 3 AsO 3

    Арсениты

    Ортофосфорная

    H 3 PO 4

    Ортофосфаты (фосфаты)

    Дифосфорная (пирофосфорная)

    H 4 P 2 O 7

    Дифосфаты (пирофосфаты)

    Дихромовая

    H 2 Cr 2 O 7

    Дихроматы

    Серная

    H 2 SO 4

    Сульфаты

    Сернистая

    H 2 SO 3

    Сульфиты

    Угольная

    H 2 CO 3

    Карбонаты

    Фосфористая

    H 3 PO 3

    Фосфиты

    Фтороводородная (плавиковая)

    Фториды

    Хлороводородная (соляная)

    Хлориды

    Хлорная

    HClO 4

    Перхлораты

    Хлорноватая

    HClO 3

    Хлораты

    Хлорноватистая

    HClO

    Гипохлориты

    Хромовая

    H 2 CrO 4

    Хроматы

    Циановодородная (синильная)

    Цианиды

    Получение кислот

    1. Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом:

    H 2 + Cl 2 → 2HCl,

    H 2 + S H 2 S.

    2. Кислородсодержащие кислоты нередко могут быть получены при непосредственном соединении кислотных оксидов с водой:

    SO 3 + H 2 O = H 2 SO 4 ,

    CO 2 + H 2 O = H 2 CO 3 ,

    P 2 O 5 + H 2 O = 2 HPO 3 .

    3. Как бескислородные, так и кислородсодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:

    BaBr 2 + H 2 SO 4 = BaSO 4 + 2HBr,

    CuSO 4 + H 2 S = H 2 SO 4 + CuS,

    CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O.

    4. В ряде случаев для получения кислот могут быть использованы окислительно-восстановительные реакции:

    H 2 O 2 + SO 2 = H 2 SO 4 ,

    3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO .

    Химические свойства кислот

    1. Наиболее характерное химическое свойство кислот - их способность реагировать с основаниями (а также с основными и амфотерными оксидами) с образованием солей, например:

    H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O,

    2HNO 3 + FeO = Fe(NO 3) 2 + H 2 O,

    2 HCl + ZnO = ZnCl 2 + H 2 O .

    2. Способность взаимодействовать с некоторыми металлами, стоящими в ряду напряжения до водорода, с выделением водорода:

    Zn + 2HCl = ZnCl 2 + H 2 ,

    2Al + 6HCl = 2AlCl 3 + 3H 2 .

    3. С солями, если образуется малорастворимая соль или летучее вещество:

    H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl,

    2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2 ,

    2KHCO 3 + H 2 SO 4 = K 2 SO 4 +2SO 2 + 2H 2 O.

    Заметим, что многоосновные кислоты диссоциируют ступенчато, причем легкость диссоциации по каждой из ступеней падает, поэтому для многоосновных кислот вместо средних солей часто образуются кислые (в случае избытка реагирующей кислоты):

    Na 2 S + H 3 PO 4 = Na 2 HPO 4 + H 2 S ,

    NaOH + H 3 PO 4 = NaH 2 PO 4 + H 2 O.

    4. Частным случаем кислотно-основного взаимодействия являются реакции кислот с индикаторами, приводящие к изменению окраски, что издавна используется для качественного обнаружения кислот в растворах. Так, лакмус изменяет цвет в кислой среде на красный.

    5. При нагревании кислородсодержащие кислоты разлагаются на оксид и воду (лучше в присутствии водоотнимающего P 2 O 5 ):

    H 2 SO 4 = H 2 O + SO 3 ,

    H 2 SiO 3 = H 2 O + SiO 2 .

    М.В. Андрюxoва, Л.Н. Бopoдина


    Кислоты можно классифицировать исходя из разных критериев:

    1) Наличие атомов кислорода в кислоте

    2) Основность кислоты

    Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H + , а также замещаться на атомы металла:

    4) Растворимость

    5) Устойчивость

    7) Окисляющие свойства

    Химические свойства кислот

    1. Способность к диссоциации

    Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:

    либо в таком виде: HCl = H + + Cl —

    либо в таком: HCl → H + + Cl —

    По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.

    В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:

    CH 3 COOH CH 3 COO — + H +

    Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H + :

    H 3 PO 4 H + + H 2 PO 4 —

    H 2 PO 4 — H + + HPO 4 2-

    HPO 4 2- H + + PO 4 3-

    Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H 3 PO 4 диссоциируют лучше (в большей степени), чем ионы H 2 PO 4 — , которые, в свою очередь, диссоциируют лучше, чем ионы HPO 4 2- . Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H + .

    Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:

    H 2 SO 4 2H + + SO 4 2-

    2. Взаимодействие кислот с металлами

    Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H 2 SO 4(конц.) и HNO 3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:

    H 2 SO 4(разб.) + Zn ZnSO 4 + H 2

    2HCl + Fe FeCl 2 + H 2

    Что касается кислот-сильных окислителей, т.е. H 2 SO 4 (конц.) и HNO 3 , то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.

    3. Взаимодействие кислот с основными и амфотерными оксидами

    Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:

    H 2 SO 4 + ZnO ZnSO 4 + H 2 O

    6HNO 3 + Fe 2 O 3 2Fe(NO 3) 3 + 3H 2 O

    H 2 SiO 3 + FeO ≠

    4. Взаимодействие кислот с основаниями и амфотерными гидроксидами

    HCl + NaOH H 2 O + NaCl

    3H 2 SO 4 + 2Al(OH) 3 Al 2 (SO 4) 3 + 6H 2 O

    5. Взаимодействие кислот с солями

    Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:

    H 2 SO 4 + Ba(NO 3) 2 BaSO 4 ↓ + 2HNO 3

    CH 3 COOH + Na 2 SO 3 CH 3 COONa + SO 2 + H 2 O

    HCOONa + HCl HCOOH + NaCl

    6. Специфические окислительные свойства азотной и концентрированной серной кислот

    Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).

    Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO 3 и концентрированной H 2 SO 4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.

    В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.

    Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:

    7. Восстановительные свойства бескислородных кислот

    Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:

    4HCl + MnO 2 MnCl 2 + Cl 2 + 2H 2 O

    16HBr + 2KMnO 4 2KBr + 2MnBr 2 + 8H 2 O + 5Br 2

    14НI + K 2 Cr 2 O 7 3I 2 ↓ + 2Crl 3 + 2KI + 7H 2 O

    Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.

    6HI + Fe 2 O 3 2FeI 2 + I 2 ↓ + 3H 2 O

    2HI + 2FeCl 3 2FeCl 2 + I 2 ↓ + 2HCl

    Высокой восстановительной активностью обладает также и сероводородная кислота H 2 S. Ее может окислить даже такой окислитель, как диоксид серы.

    Кислоты – это сложные вещества, молекулы которых состоят из атомов водорода (способных замещаться атомами металла), связанных с кислотным остатком.

    Общая характеристика

    Кислоты классифицируются на бескислородные и кислородосодержащие, а также на органические и неорганические.

    Рис. 1. Классификация кислот – бескислородные и кислородосодержащие.

    Бескислородные кислоты – это растворы в воде таких бинарных соединений, как галогеноводороды или сероводород. В растворе полярная ковалентная связь между водородом и электроотрицательным элементом поляризуется под действием дипольных молекул воды, и молекулы распадаются на ионы. присутствие ионов водорода в веществе и позволяет называть водные растворы этих бинарных соединений кислотами.

    Кислоты называют от названия бинарного соединения прибавлением окончания -ная. например, HF – фтороводородная кислота. Анион кислоты называют по названию элемента прибавлением окончания -ид, например, Cl – хлорид.

    Кислородосодержащие кислоты (оксокислоты) – это кислотные гидроксиды, диссоциирующие по кислотному типу, то есть как протолиты. Общая формула их – Э(ОН)mOn, где Э – неметалл или металл с переменной валентностью в высшей степени окисления. при условии, когда n равно 0, то кислота слабая (H 2 BO 3 – борная), если n=1, то кислота либо слабая, либо средней силы (H 3 PO 4 -ортофосфорная), если n больше или равно 2, то кислота считается сильной (H 2 SO 4).

    Рис. 2. Серная кислота.

    Кислотным гидроксидам соответствуют кислотные оксиды или ангидриды кислот, например, серной кислоте соответствует серный ангидрид SO 3 .

    Химические свойства кислот

    Для кислот характерен ряд свойств, которые отличают их от солей и других химических элементов:

    • Действие на индикаторы. Как протолиты кислоты диссоциируют с образованием ионов H+, которые изменяют окраску индикаторов: фиолетовый раствор лакмуса становится красным, а оранжевый раствор метилоранжа становится розовым. Многоосновные кислоты диссоциируют ступенчато, причем каждая последующая стадия идет труднее предыдущей, так как на второй и третьей ступенях диссоциируют все более слабые электролиты:

    H 2 SO 4 =H+ +HSO 4 –

    В зависимости от того, является ли кислота концентрированной или разбавленной зависит цвет индикатора. Так, например, при опускании лакмуса в концентрированную серную кислоту, индикатор становится красным, в разбавленной же серной кислоте цвет не изменится.

    • Реакция нейтрализации , то есть взаимодействие кислот с основаниями, в результате чего происходит образование соли и воды, идет всегда, если хотя бы один из реагентов сильный (основание или кислота). Реакция не идет, если кислота слабая, основание нерастворимо. Например, не идет реакция:

    H 2 SiO 3 (слабая, нерастворимая в воде кислота)+ Cu(OH) 2 – реакция не идет

    Но в других случаях реакция нейтрализации с этими реагентами идет:

    H 2 SiO 3 +2KOH (щелочь)=K 2 SiO 3 +2H 2 O

    • Взаимодействие с основными и амфотерными оксидами:

    Fe 2 O 3 +3H 2 SO 4 =Fe 2 (SO 4) 3 +3H 2 O

    • Взаимодействие кислот с металлами , стоящими в ряду напряжений левее водорода, приводит к процессу, в результате которого образуется соль, и выделяется водород. Эта реакция идет легко, если кислота достаточно сильная.

    Азотная кислота и концентрированная серная кислоты реагируют с металлами за счет восстановления не водорода, а центрального атома:

    Mg+H 2 SO 4 +MgSO 4 +H 2

    • Взаимодействие кислот с солями происходит, если в результате образуется слабая кислота. Если соль, реагирующая с кислотой, растворима в воде, то реакция пойдет также в том случае, если образуется нерастворимая соль:

    Na 2 SiO 3 (растворимая соль слабой кислоты)+2HCl (сильная кислота)=H 2 SiO 3 (слабая нерастворимая кислота)+2NaCl (растворимая соль)

    Многие кислоты находят применение в промышленности, например, уксусная кислота необходима для консервирования мясных и рыбных продуктов

    Рис. 3. Таблица химические свойства кислот.

    Что мы узнали?

    В 8 классе по химии дается общая информация по теме «Кислоты». Кислоты – это сложные вещества, в состав которых входят атомы водорода, которые способны замещаться на атомы металлов и кислотных остатков. Изучаемые химические элементы обладают рядом химических свойств, например, они могут взаимодействовать с солями, оксидами, металлами.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.7 . Всего получено оценок: 253.